Matrix Representation of Double Layered Non–Cyclic Fuzzy Graph

Pathinathan T.\(^1\) and Peter M.\(^2\)
\(^1\)P.G. and Research Department of Mathematics, Loyola College, Chennai - 34, Tamil Nadu, India
\(^{1}\)pathinathan@gmail.com
\(^2\)P.G. and Research Department of Mathematics, Loyola College, Chennai - 34, Tamil Nadu, India
\(^{2}\)matzpeter@gmail.com

Abstract

Matrix representation of fuzzy relations has become an important tool in the field of science, medical diagnosis and engineering. In this paper we have introduced the double layered non-cyclic fuzzy graph in matrix representation with respect to the vertices. We have also discussed some of its properties and explained it with numerical examples.

AMS Subject Classification:03E72, 05C72

Keywords: Fuzzy graph, double layered fuzzy graph, double layered non-cyclic fuzzy graph, vertex matrix representation of double layered non-cyclic fuzzy graph.

1 Introduction

Matrices are one of the most powerful tools in mathematics which perform calculations in a very simple and compact form. The classical mathematics fails to solve problems that deals with uncertainties occur in a vague environment. The concept of fuzzy sets was introduced by Zadeh in 1965 \[8\]. Rosenfeld in 1975 introduced fuzzy graph theory \[9\]. Thomson introduced the concept of fuzzy matrix in 1977 and he discussed
the convergence of the powers of a fuzzy matrix [5]. As an extension of
Boolean matrices Kim and Roush developed the theory of fuzzy matrices
[6]. Ragab and Emam discussed the determinant and adjoint of a fuzzy
square matrix [7]. T. Pathinathan and J. Jesintha Roseline defined the
double layered fuzzy graph in 2014 [1]. In the same year they introduced
the matrix representation of double layered fuzzy graph and also studied
its properties [2]. In this paper we have represented the 3D - structure
of non - cyclic fuzzy graph in the form of fuzzy matrix and also studied
some of its properties with an example.

2 Preliminaries

2.1 Definition

A fuzzy graph G is a pair of function $G : (\sigma, \mu)$ where σ is a fuzzy
subset of non-empty set S and μ is a symmetric fuzzy relation on σ. The
underlying crisp graph of $G : (\sigma, \mu)$ is denoted by $G^* : (\sigma^*, \mu^*)$.

2.2 Definition

Let $G : (\sigma, \mu)$ be a fuzzy graph with the underlying crisp graph $G^* :
(\sigma^*, \mu^*)$. The pair $DL(G) : (\sigma_{DL}, \mu_{DL})$ is defined as follows. The node
set of $DL(G)$ be $\sigma^* \cup \mu^*$. The fuzzy subset σ_{DL} is defined as
$\sigma_{DL} = \begin{cases}
\sigma(u) & \text{if } u \in \sigma^* \\
\mu(uv) & \text{if } uv \in \mu^*
\end{cases}$
The fuzzy relation μ_{DL} on $V \cup E$ is defined as
$\mu_{DL} = \begin{cases}
\mu(uv) & \text{if } u, v \in \sigma^*. \\
\mu(e_i) \land \mu(e_j) & \text{if the edge } e_i \text{ and } e_j \text{ have node in common between them.} \\
\mu(u_i) \land \mu(e_i) & \text{if } u_i \in \sigma^* \text{ and } e_i \in \mu^* \text{ and each } e_i \text{ incident with single } u_i \text{ either} \\
& \text{clockwise or anticlockwise.} \\
0 & \text{otherwise.}
\end{cases}$
By definition, $\mu_{DL}(u, v) \leq \sigma_{DL}(u) \land \sigma_{DL}(v) \forall u, v \in \sigma^* \cup \mu^*$. Here μ_{DL}
is a fuzzy relation on the fuzzy subset σ_{DL}. Hence the pair $DL(G) :
(\sigma_{DL}, \mu_{DL})$ is a fuzzy graph and is termed as Double Layered Fuzzy
Graph.

2.3 Definition

Let $G : (\sigma, \mu)$ be a fuzzy graph with the underlying crisp graph $G^* :
(\sigma^*, \mu^*)$. The pair $NCDL(G) : (\sigma_{NCDL}, \mu_{NCDL})$ is defined as follows.
The vertex set of \(NCDL(G) \) be \(\sigma^* \cup \mu^* \).
The fuzzy subset \(\sigma_{NCDL} \) is defined as
\[
\sigma_{NCDL} = \sigma(u) \text{ if } u \in \sigma^*.
\]
\[
\sigma_{NCDL} = \mu(uv) \text{ if } uv \in \mu^*.
\]
and the fuzzy relation \(\mu_{NCDL} \) on \(\sigma^* \cup \mu^* \) is defined as

1. \(\mu_{NCDL} = \mu(u_iu_j) = e_i \text{ if } e_i \text{ is incident with } \sigma(u_i) \text{ and } \sigma(u_j), \) i.e. there is only one edge incident with the corresponding vertex if \(u_i, u_j \in \sigma^* \) and \(e_i \in \mu^* \).

2. \(\mu_{NCDL} = \mu(u_iu_j) \wedge \mu(u_iu_k) = e_i \wedge e_j \text{ if } e_i \text{ is incident with } \sigma(u_i) \) and \(\sigma(u_j), e_j \text{ is incident with } \sigma(u_i) \text{ and } \sigma(u_k) \) i.e. there exist more than one edge incident with the corresponding vertex and if \(u_i, u_j, u_k \in \sigma^* \) and \(e_i, e_j, e_k \in \mu^* \).

3. \(\mu_{NCDL} = \mu(e_i) \wedge \mu(e_j) \) if the edge \(e_i \) and \(e_j \) have a node in common between them.

4. \(\mu_{NCDL} = \sigma(u_i) \wedge \mu(e_i) \) if \(u_i \in \sigma^* \) and \(e_i \in \mu^* \), each \(e_i \) is incident with corresponding single \(u_i \).

5. \(\mu_{NCDL} = 0 \) otherwise.

By definition, \(\mu_{NCDL}(u,v) \leq \sigma_{NCDL}(u) \wedge \sigma_{NCDL}(v) \forall u, v \in \sigma^* \cup \mu^* \).
Here \(\mu_{NCDL} \) is a fuzzy relation on the fuzzy subset \(\sigma_{NCDL} \). Hence the pair \(NCDL(G) : (\sigma_{NCDL}, \mu_{NCDL}) \) is a fuzzy graph and is termed as Double Layered Non-Cyclic Fuzzy Graph.

3 Matrix Representation of Non-Cyclic Double Layered Fuzzy Graph

Consider a fuzzy graph \(G \) with \(n=3 \) vertices

\[\text{International Journal of Pure and Applied Mathematics Special Issue} \]
The matrix representation for the given fuzzy graph \(G : (\sigma, \mu) \) with respect to its vertices is given below

\[
M_G = \begin{bmatrix}
0.3 & 0.3 & 0 \\
0.3 & 0.4 & 0.4 \\
0.3 & 0.4 & 0.5
\end{bmatrix}
\]

The 3D-Structure for the non-cyclic fuzzy graph \(G : (\sigma, \mu) \) is given by

The matrix representation for the non-cyclic fuzzy graph \(G : (\sigma, \mu) \) is given by

\[
M_{NG} = \begin{bmatrix}
0.3 & 0.3 & 0 & 0 & 0 \\
0.3 & 0.4 & 0.4 & 0 & 0 \\
0.3 & 0.4 & 0.5 & 0 & 0 \\
0.3 & 0 & 0.3 & 0.3 & 0 \\
0.3 & 0 & 0.3 & 0.3 & 0.3 \\
0.3 & 0 & 0.3 & 0.4 & 0.3 \\
0.3 & 0.3 & 0.4 & 0.3 & 0.4
\end{bmatrix}
\]
3.1 Vertex Matrix Representation of Double Layered Non-Cyclic Fuzzy Graphs

For a non-cyclic fuzzy graph $G = (\sigma, \mu)$ with the fuzzy relation μ to be reflexive and symmetric, the edge matrix $M_{\text{NCDLG}}\sigma$ is defined as follows:

$$M_{\text{NCDLG}}\sigma = \begin{cases}
\mu(e_i) \land \mu(e_j) & \text{if } i \neq j, \\
\mu(e_i) & \text{if } i = j, \\
\mu(u_i) \land \mu(e_i) & \text{each } e_i \text{ is incident with single } u_i, \\
0 & \text{otherwise}.
\end{cases}$$

Example 3.1 For Figure 2, the vertex matrix representation if $e_i \in \sigma^*_\text{NCDL}$ is given by

$$\begin{pmatrix}
0 & 0.3 & 0.3 \\
0.3 & 0 & 0 \\
0.3 & 0 & 0.4
\end{pmatrix}$$

Thus the matrix representation of double layered non-cyclic fuzzy graph becomes

$$M_{\text{NCDLG}}\sigma = \begin{pmatrix} M_G & NCD_G\
NCD_G & NCD_G \end{pmatrix}$$

4 Theoretical Concepts

4.1 Theorem

Trace $(M_{\text{NCDLG}}\sigma) = \text{Order (G)} + \text{Order}_{\text{NCD}}(G)$

Proof: Trace $(M_{\text{NCDLG}}\sigma)$ = Sum of the diagonal entries in $M_{\text{NCDLG}}\sigma$.

$$= \sum_{i=1}^{n} \mu_{\text{NCDLG}(G)}(v_i, v_i) = \sum_{e_i \in \sigma^*} \sigma_G(e_i) + \sum_{e_i \in \mu^*} \sigma_{\text{NCDLG}}(e_i)$$

$$= \text{Order (G)} + \text{Order}_{\text{NCD}}(G).$$

4.2 Theorem

$M_{\text{NCDLG}}\sigma$ is a symmetric matrix

Proof: By the definition of $M_{\text{NCDLG}}\sigma$ it is clear that the relation μ is a symmetric relation.

Hence $(M_{\text{NCDLG}}\sigma)_{i,j} = \mu(u_i, u_j)$

$$= \mu(u_j, u_i) \cdot \mu \text{ is symmetric}$$
Further from the representation of double layered non-cyclic fuzzy graph
We have $M_{NCDLG} = \left(\begin{array}{cc} M_G & NCD_G \\ NCD_G & NCD_G \end{array} \right)$
and the transpose of this matrix is

$$M^T_{NCDLG} = \left(\begin{array}{cc} M_G & NCD_G \\ NCD_G & NCD_G \end{array} \right)$$

$$\Rightarrow M_{NCDLG} = M^T_{NCDLG}$$
Thus the matrix M_{NCDLG} is symmetric.

4.3 Theorem

The sum of all entries in M_{NCDLG} except the diagonal elements is

$$2 \text{ size}(G) + 2 \sum_{i,j=1}^{n} \mu(u_i) \land \mu(e_j) + 2 \sum_{i=1}^{n} \mu(u_i) \land \mu(e_i).$$

Proof: The sum of all the elements except the diagonal elements is

$$\sum_{i,j=1}^{n} \mu(u_i, u_j) \text{ if } u_i \in \sigma^*, e_j \in \sigma_{DL}^* \text{ then we have}$$

$$\sum_{i,j=1}^{n} \left(\sum_{i,j=1}^{n} (M_G)_{ij} + \sum_{i,j=1}^{n} (NCD_G)_{ij} \right)$$

$$= 2 \text{ size}(G) + 2 \sum_{i,j=1}^{n} \mu(e_i) \land \mu(e_j) \text{ and if } u_i \in \mu^*, \text{ then we have}$$

$$\sum_{i=1}^{n} \left(\sum_{i=1}^{n} \mu(u_i) \land \mu(e_i) \right) = 2 \sum_{i=1}^{n} \mu(u_i) \land \mu(e_i).$$

Hence $\sum_{i,j=1}^{n} \mu(u_i, u_j) = 2 \text{ size}(G) + 2 \sum_{i,j=1}^{n} \mu(e_i) \land \mu(e_j) + 2 \sum_{i=1}^{n} \mu(u_i) \land \mu(e_i).$

Example 4.1 Consider the fuzzy graph G, whose crisp graph G^* is a non-cyclic with $n = 4$ vertices.
Figure 3: Fuzzy Graph $G : (\sigma, \mu)$ whose crisp graph $G^* : (\sigma^*, \mu^*)$ is a non-cyclic.

Figure 4: Double Layered Non-Cyclic Fuzzy Graph NCDL (G) $= (\sigma_{NCDL}, \mu_{NCDL})$.
Here \(\text{Size} (G) = 1.1 \), $\sum_{i,j}^{n} \mu(e_i) \wedge \mu(e_j) = 0.9$ and $\sum_{i=1}^{n} \mu(u_i) \wedge u_i \neq j$.

\[
\begin{bmatrix}
0.3 & 0 & 0.3 & 0.3 & 0 & 0 & 0 \\
0 & 0.5 & 0.4 & 0 & 0.4 & 0 & 0 \\
0.3 & 0.4 & 0.4 & 0 & 0 & 0.3 & 0 \\
0 & 0.4 & 0 & 0 & 0.4 & 0 & 0.4 \\
0.3 & 0 & 0.3 & 0.3 & 0.3 & 0.3 & 0.3 \\
0 & 0 & 0.4 & 0 & 0 & 0.3 & 0.4 \\
\end{bmatrix}
\]

\[
M_{\text{NCDLG}} = \nu_1 u_2 u_3 u_4 e_1 e_2 e_3 e_4 \\
\nu_1 \nu_2 \nu_3 \nu_4 \\
e_1 e_2 e_3 e_4
\]

5 Conclusion

In this paper we have defined the matrix representation of the double layered non-cyclic fuzzy graph and also verified some of its properties along with numerical examples.

References

