Accurate 2-Domination in Fuzzy Graphs using Strong Arcs

A.Nagoor Gani¹ and A.Arif Rahman²

¹P.G. and Research Department of Mathematics, Jamal Mohamed College (Autonomous), Tiruchirapalli-620020, India
GANIJMC@YAHOO.CO.IN

²P.G. and Research Department of Mathematics, Jamal Mohamed College (Autonomous), Tiruchirapalli-620020, India
ARIEF9007@GMAIL.COM

Abstract

In this paper, the concept of accurate 2-dominating set and accurate 2-domination number of a fuzzy graph was introduced. In a fuzzy graph G, a subset D of V is said to be an accurate 2-dominating set of G, if V − D has no 2-dominating set of same fuzzy cardinality |D|. The minimum cardinality taken over all accurate 2-dominating sets of G is called the accurate 2-domination number of G and it is denoted as γ(2 fark)(G). Here, some properties of accurate 2-dominating sets and also some bounds of accurate 2-domination numbers are found.

AMS Subject Classification: 03E72, 05C69, 05C72

Key Words and phrases: 2-dominating sets, accurate dominating sets, accurate 2-dominating sets, accurate 2-domination number and strong arcs.

1 Introduction

Ore [9] and Berge [1] initiated the study on dominating sets in graphs. Then, the domination number and the independent domination number of graphs are introduced by Cockayne and Hedetniemi [2]. The n-domination in graphs was introduced by Fink and Jacobson [3] in the year 1985. Accurate domination in graphs was introduced by Kulli and Kattimani [4].

(See [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12])

2 Preliminaries

Definition 1. A fuzzy graph \(G = (\sigma, \mu) \) is a pair of functions \(\sigma : V \rightarrow [0, 1] \) and \(\mu : V \times V \rightarrow [0, 1] \), where for all \(x, y \in V \) we have \(\mu(x, y) \leq \sigma(x) \wedge \sigma(y) \).

Definition 2. A fuzzy graph \(H = (\tau, \rho) \) is called a fuzzy subgraph of \(G \) if \(\tau(v_i) \leq \sigma(v_i) \) for all \(v_i \in V \) and \(\rho(v_i, v_j) \leq \mu(v_i, v_j) \) for all \(v_i, v_j \in V \).

Definition 3. An arc \((u, v)\) in a fuzzy graph \(G \) is said to be strong, if \(\mu^\infty(u, v) = \mu(u, v) \) and then the nodes \(u \) and \(v \) are said to be strong neighbours. The strong neighbourhood of the node \(u \) is defined as \(N_S(u) = \{v \in V : (u, v) \text{ is a strong arc}\} \).

Definition 4. The strong neighbourhood degree of a node \(u \) is defined as \(d_{N_S}(u) = \sum_{v \in N_S(u)} \sigma(v) \). The minimum strong neighbourhood degree of a fuzzy graph \(G \) is defined as \(\delta_{N_S}(G) = \min \{d_{N_S}(u) / u \in V \} \). The maximum strong neighbourhood degree of a fuzzy graph \(G \) is defined as \(\Delta_{N_S}(G) = \max \{d_{N_S}(u) / u \in V \} \).

Definition 5. The underlying crisp graph of a fuzzy graph \(G = (\sigma, \mu) \) is denoted by \(G^* = (\sigma^*, \mu^*) \), where \(\sigma^* = \{v_i \in V / \sigma(v_i) > 0\} \) and \(\mu^* = \{(v_i, v_j) \in V / \mu(v_i, v_j) \text{ is a strong arc}\} \).

Definition 6. In a fuzzy graph \(G \). A subset \(D \) of \(V \) is said to be dominating set of \(G \), if every node in \(V - D \) has atleast one strong neighbour in \(D \). The minimum cardinality taken over all dominating sets of fuzzy graph \(G \) is called the domination number of \(G \) and it is denoted by \(\gamma_f(G) \).

Definition 7. In a fuzzy graph \(G \). A subset \(D \) of \(V \) is said to be 2- dominating set of \(G \), if every node in \(V - D \) has at least two strong neighbours in \(D \). The minimum cardinality taken over all 2- dominating sets of fuzzy graph \(G \) is called the 2- domination number of \(G \) and it is denoted by \(\gamma_{f2}(G) \).

Definition 8. In a fuzzy graph \(G \). A subset \(D \) of \(V \) is said to be an accurate dominating set of \(G \), if \(V - D \) has no dominating set of same fuzzy cardinality \(|D| \). The minimum cardinality taken over all accurate dominating sets of fuzzy graph \(G \) is called the accurate domination number of \(G \) and it is denoted by \(\gamma_{fa}(G) \).
3 Accurate 2-domination in fuzzy graphs

In this section, we define accurate 2-dominating set and accurate 2-domination number of a fuzzy graph with suitable example. We also discuss some properties on accurate 2-domination number of fuzzy graphs using strong arcs.

Definition 9. A 2-dominating set D, where $D \subseteq V$, of fuzzy graph G is said to be an accurate 2-dominating set of G if $V - D$ has no 2-dominating set of same fuzzy cardinality $|D|$. The minimum cardinality taken over all accurate 2-dominating sets of G is called the accurate 2-domination number of G and it is denoted by $\gamma_{fa2}(G)$.

Example 10. Here $D_1 = \{a, d, f\}$, $D_2 = \{b, c, e\}$, $D_3 = \{e, f\}$, $D_4 = \{a, c\}$, $D_5 = \{a, b\}$, $D_6 = \{a, b, c, d\}$, $D_7 = \{a, b, e, f\}$, $D_8 = \{c, d, e, f\}$, $D_9 = \{d, f\}$, $D_{10} = \{c, e\}$ are some of the dominating set of fuzzy graph G. D_1, D_2, D_6, D_7, D_8 are the accurate 2-dominating sets.

The fuzzy cardinality of $|D_1|$, $|D_2|$, $|D_6|$, $|D_7|$ and $|D_8|$ are 2.3, 1.8, 2.6, 2.7 and 2.9 respectively.

Then, the accurate 2-domination number is

$\gamma_{fa2}(G) = \min\{|D_1|, |D_2|, |D_6|, |D_7|, |D_8|\}$

$\gamma_{fa2}(G) = \min\{2.3, 1.8, 2.6, 2.7, 2.9\}$

$\gamma_{fa2}(G) = 1.8$

Therefore, the accurate 2-domination number is 1.8 and the minimum accurate 2-dominating set is D_2.

Theorem 11. In a fuzzy graph G, if there exists a node $v \in V$, whose strong neighbours $|N_S(v)| = 0$ or 1, then v belongs to every accurate 2-dominating set of G.

Proof. Let G be a fuzzy graph.

Let $v \in V(G)$, be a node which has strong neighbour atmost one. i.e., $|N_S(v)| = 0$ or 1.

Case (i): Assume that, v doesnot have any strong neighbours in G. i.e., $|N_S(v)| = 0$.

If $v \in V - D$, then either any node in accurate 2-dominating set D or any nodes in $V(G)$ cannot dominate v. So, v must be dominated by itself, i.e., $v \in D$.

Hence, if $|N_S(v)| = 0$, then v belongs to every accurate 2-dominating set of G.

Case (ii): Assume that, v has only one strong neighbour in G, $|N_S(v)| = 1$.
Let \(u \) be the strong neighbours of \(v \) in \(G \).

Suppose, \(u \) dominates \(v \), then \(u \in D \) and \(v \in V - D \).

Since, \(v \) has only one strong neighbours in \(D \) then \(D \) cannot be an accurate 2-dominating set of \(G \). Therefore, \(v \) should be dominated by itself.

Hence, \(|N_S(v)| = 1 \), then \(v \) belongs to every accurate 2-dominating set of \(G \).

Corollary 12. For any fuzzy graph \(G \) if \(|N_S(v)| = 0 \) or \(1 \), then the accurate 2-dominating number and 2-domination number of \(G \) must be same, i.e., \(\gamma_{fa2}(G) = \gamma_{f2}(G) \).

Proof. Let \(G \) be any fuzzy graph and a subset \(D \subseteq V \) be a 2-dominating set of \(G \), then every nodes in \(V - D \) must have two strong neighbours in \(D \).

By theorem 11, if \(|N_S(v)| = 0 \) or \(1 \), then \(v \) belongs to every accurate 2-dominating set of \(G \). So, \(v \) must belongs to \(D \).

Since, \(v \in D \) and \(v \) has atmost one strong neighbours in \(V(G) \), then \(V - D \) does not have any 2-dominating set of same fuzzy cardinality \(|D| \). Therefore, the 2-dominating set \(D \) itself forms an accurate 2-dominating set of \(G \).

Hence the proof.

Theorem 13. Every accurate 2-dominating set of a fuzzy graph \(G \) is also a 2-dominating set of \(G \).

Proof. Let \(G \) be a fuzzy graph and \(D \) a subset \(V \), be an accurate 2-dominating set of \(G \). Since, \(D \) is an accurate 2-dominating set, then every nodes in \(V - D \) has atleast two strong neighbours in \(D \).

That is, each node in \(V - D \) is dominated by atleast two nodes in \(D \).

Therefore, every accurate 2-dominating set \(D \) itself forms 2- dominating set of fuzzy graph \(G \).

Theorem 14. Every accurate 2-dominating set of a fuzzy graph \(G \) is also an accurate dominating set of \(G \).

Proof. Let \(G \) be a fuzzy graph and a subset \(D \subseteq V \), be an accurate 2-dominating set of \(G \).

Since, \(D \) is an accurate 2-dominating set, then every nodes in \(V - D \) has atleast two strong neighbours in \(D \), i.e., every nodes in \(V - D \) will be dominated by atleast two nodes in \(D \). Therefore, \(D \) is also a dominating set of \(G \) and if \(V - D \) does not contains any dominating set of same fuzzy cardinality \(|D| \), Then \(D \) itself forms an accurate dominations set of \(G \).

Theorem 15. For any fuzzy graph \(G \), \(\gamma_{f2}(G) \leq \gamma_{fa2}(G) \).

Proof. Assume that, \(D \subseteq V \) be the minimum accurate 2-dominating set of fuzzy graph \(G \).

By theorem 13, every accurate 2-dominating set of a fuzzy graph \(G \) is also a 2-dominating set of \(G \). Then, every nodes in \(V - D \) has atleast two strong neighbours in \(D \), therefore, every node \(u \in V - D \) is dominated by atleast two nodes in \(D \). Therefore, \(D \) is a 2-dominating set of \(G \). Hence, \(\gamma_{f2}(G) \leq \gamma_{fa2}(G) \).
Theorem 16. For any fuzzy graph G, $\gamma_{fa}(G) \leq \gamma_{fa2}(G)$.

Proof. Assume that, $D \subseteq V$ be the minimum accurate 2-dominating set of fuzzy graph G.

By theorem 14, every accurate 2-dominating set of a fuzzy graph G is also an accurate dominating set of G. Then, every nodes in $V - D$ has at least two strong neighbours in D, therefore, every node $u \in V - D$ is dominated by at least two nodes in D. Therefore, D is also a dominating set of G and if $V - D$ does not have any dominating set of same fuzzy cardinality $|D|$. Then, D itself forms an accurate dominating set of G. Hence, $\gamma_{fa}(G) \leq \gamma_{fa2}(G)$.

Theorem 17. For any fuzzy graph G. If D be an accurate 2-dominating set of fuzzy graph G, then $V - D$ need not to be an accurate 2-dominating set of G.

Proof. Let G be a fuzzy graph and D, a subset of V, be an accurate 2-dominating set of G.

Case (i): By theorem 11, if $|N_S(v)| = 0$ or 1, then v belongs to every accurate 2-dominating sets of G. That is, $v \in D$, has at most one strong neighbour in $V - D$. Therefore, $V - D$ has at most one strong neighbour which dominates v. Hence, $V - D$ cannot be a 2-dominating set of G and also it cannot be an accurate 2-dominating set of G.

Case (ii): Assume that, D be an accurate 2-dominating set of G. If every node $v \in D$ has at least two strong neighbours in $V - D$ and the fuzzy cardinality of $|V - D| \neq |D|$, then $V - D$ is an accurate 2-dominating set of G.

Therefore by case(i) and (ii), if D be any accurate 2-dominating set of G, then $V - D$ need not be an accurate 2-dominating set of fuzzy graph G.

Theorem 18. For any fuzzy graph G, $\gamma_{fa2}(G) \leq |V| - \gamma_{fa}(G) + 1$.

Proof. Assume that, a subset D of V, be the minimum dominating set of fuzzy graph G. Therefore, for any node $v \in D$, $(V - D) \cup \{v\}$ forms an accurate dominating set of G. And let us denote it as $A = (V - D) \cup \{v\}$.

Hence, if $V - A$ has at least two strong neighbours in A, then the accurate dominating set A itself forms an accurate 2-dominating set of G.

That is, $|A| \leq |(V - D) \cup \{v\}|$

$|A| \leq |V| - |D| + 1$

Thus, $\gamma_{fa2}(G) \leq |V| - \gamma_{fa}(G) + 1$.

Theorem 19. For any fuzzy graph G, bounds of accurate 2-domination number is

$$\frac{|V|}{\Delta_{N_a}(G)} + 1 \leq \gamma_{fa2}(G) \leq \frac{|V|\Delta_{N_a}(G)}{\Delta_{N_a}(G) + 1} + 1$$

Proof. Let G be a fuzzy graph and a subset $D \subseteq V$, be an accurate 2-dominating set of G. Since, D is an accurate 2-dominating set of G, then each nodes in $V - D$ must have at least two strong neighbours in D.

Case (i): Let us prove that $\gamma_{fa2}(G) \geq \frac{|V|}{\Delta_{N_a}(G) + 1}$

If D be an accurate dominating set of G and there exists a node $v \in V$, which
has maximum strong neighbours in \(V(G) \), then \(v \) can dominate itself and number of nodes in \(\Delta_{N_S} \). Therefore, accurate domination number of fuzzy graph cannot be less than \(\frac{|V|}{\Delta_{N_S}} + 1 \). That is

\[
\gamma_{fa}(G) \geq \frac{|V|}{\Delta_{N_S}(G) + 1}
\]

Since \(\gamma_{fa}(G) \leq \gamma_{fa2}(G) \). Then,

\[
\gamma_{fa2}(G) \geq \frac{|V|}{\Delta_{N_S}(G) + 1}
\]

Case (ii): Now, let us prove, \(\gamma_{fa2}(G) \leq \frac{|V|\Delta_{N_S}(G)}{\Delta_{N_S}(G)+1} + 1 \).

By theorem 18, \(\gamma_{fa2}(G) \leq |V| - \gamma_{fa}(G) + 1 \)

By equation 1, \(\gamma_{fa2}(G) \leq |V| - \frac{|V|\Delta_{N_S}(G)}{\Delta_{N_S}(G)+1} + 1 \)

\[
\gamma_{fa2}(G) \leq \frac{|V|}{\Delta_{N_S}(G) + 1} \]

\[
\gamma_{fa2}(G) \leq \frac{|V|\Delta_{N_S}(G)}{\Delta_{N_S}(G)+1} + 1
\]

Therefore, by equation 2 and 3, we get \(\frac{|V|}{\Delta_{N_S}(G)+1} \leq \gamma_{fa2}(G) \leq \frac{|V|\Delta_{N_S}(G)}{\Delta_{N_S}(G)+1} + 1 \).

Corollary 20. For any fuzzy graph \(G \), \(\gamma_{fa2}(G) \geq \frac{|V|}{\Delta_{N_S}(G)+1} \).

Proof. Let \(G \) be a fuzzy graph and \(D \) be a minimum accurate 2-dominating set of fuzzy graph \(G \), where \(D \subseteq V \). Let \(S \) be the set of all strong arcs between the sets \(D \) and \(V - D \).

If there exist a node \(u \in V \), whose \(|dN_S(u)| = \Delta_{N_S}(G) \), then the strong neighbourhood degree of every node \(v \in D \) does not exceed \(\Delta_{N_S}(G) \). Therefore,

\[
S \leq \Delta_{N_S}(G) \cdot \gamma_{fa2}(G)
\]

And also since every node \(v \in V - D \) has atleast two strong neighbours in \(D \). Then,

\[
S \geq 2(|V| - \gamma_{fa2}(G))
\]

From equations 4 and 5,

\[
2(|V| - \gamma_{fa2}(G)) \leq \Delta_{N_S}(G) \cdot \gamma_{fa2}(G)
\]

\[
2|V| - 2\gamma_{fa2}(G) \leq \Delta_{N_S}(G) \cdot \gamma_{fa2}(G)
\]

\[
2|V| \leq \Delta_{N_S}(G) \cdot \gamma_{fa2}(G) + 2\gamma_{fa2}(G)
\]

\[
2|V| \leq (\Delta_{N_S}(G) + 2) \cdot \gamma_{fa2}(G)
\]

\[
\therefore \gamma_{fa2}(G) \geq \frac{|V|}{\Delta_{N_S}(G)+1}.
\]
4 Conclusion

In this paper, the accurate 2-dominating set and accurate 2-domination number are defined. Some results on accurate 2-dominating sets and accurate 2-domination number are discussed. Also, bounds of accurate 2-domination number of fuzzy graphs are found.

References

