COMPARISON BETWEEN NON PERIODIC AND FOLIATED UC-EBG UWB BANDPASS FILTER

D.Sridhar raja¹,T.Vijayan², R.Abinethri³

¹,²,³Assistant Professor,
Department Of Electronics And Instrumentation Engineering,
BIST, BIHER, Bharath University, Chennai

Abstract— The main objective of this project is compare non periodic and foliated uc-ebg uwb bandpass filter .Mainly the focus is on the compactness and performance of the filter design ..In this EBG structure is investigated and applied to UWB BPFs. The UC–EBG cell is divided in four sectors with the cross line, and added with parallel coupled line to obtain a simple bandpass filter ..The performance of filter is compared by there insertion loss and return loss.

Index Terms—Bandpass filter, electromagnetic bandgap (EBG), ultra wideband (UWB), wideband filter.

I. INTRODUCTION

The Ultra-wideband (UWB) technology is being reinvented recently with many promising modern applications. In particular, the UWB radio system has been receiving great attention from both academy and industry since the Federal Communications Commission (FCC) release of the frequency band from 3.1 to 10.6 GHz for commercial communication on applications in February 2002. In an UWB system, an UWB band pass filter (BPF) is one of the key passive components to keep the spectrum of the signals to meet the FCC limits, or used in the UWB pulse generation and reshaping[1-5].

In such a system, an UWB filter is one of the key components, which should exhibit a wide bandwidth with low insertion loss over the whole band. In order to meet the FCC limit, good selectivity at both lower and higher frequency ends and flat group-delay response over the whole band are required. The recent research and development practical applications of EBG structures have improved realizing compact EBG structures filters.

2. OVERVIEW OF EBG STRUCTURES

Periodic structures are abundant in nature, which have fascinated artists and scientists alike. When they interact with electromagnetic waves, exciting phenomena appear and amazing features result. In particular, characteristics such as frequency stop bands, passbands, and band gaps could be identified.

Electromagnetic band gap structures are defined as artificial periodic (or sometimes non-periodic) objects that prevent/assist the propagation of electromagnetic waves in a specified band of frequency for all incident angles and all polarization states.

Electromagnetic band-gap (EBG) structures are periodic structures which can prohibit the propagation of electromagnetic wave in certain band of frequency. They can be
embedded in the dielectric substrate or etched on the metal layers. The EBG structures are always used to help suppress the surface waves to gain good pass band or stop band.

There are two types of EBG structure to be discussed. Firstly is Perforated dielectric and the second one is Metallodielectric structures. Perforated dielectric is defined as effectively suppress unwanted substrate mode. This structure designed by drill periodic holes on dielectric subtracts to introduce another dielectric but in practical, this structure is difficult to implement[6-12]. Metallodielectric structure is exhibits an attractive reflection phase future where the reflected field change continuously from 180 degrees to -180 degrees versus frequency.

METHOD OF MOMENTS

One of the methods, that provide the full wave analysis for the microstrip band pass filter, is the Method of Moments. In this method, the surface currents are used to model the microstrip filter structure and the volume polarization currents are used to model the fields in the dielectric slab. It has been shown by Newman and Tulyathan [17] how an integral equation is obtained for these unknown currents and using the Method of Moments, these electric field integral equations can then be solved by various techniques of algebra to provide the result. A brief overview of the Moment Method described by Harrington [18] and [5] is given below.

The basic form of the equation to be solved by the Method of Moment is:

\[F(g) = h \]

where \(F \) is a known linear operator, \(g \) is an unknown function, and \(h \) is the source or excitation function. The aim here is to find \(g \), when \(F \) and \(h \) are known. The unknown function \(g \) can be expanded as a linear combination of \(N \) terms to give:

\[g = \sum_{n=1}^{N} a_n g_n = a_1 g_1 + a_2 g_2 + \ldots + a_N g_N \]

The unknown constants \(a_n \) can now be found using algebraic techniques such as LU decomposition or Gaussian elimination. It must be remembered that the weighting functions must be selected appropriately so that elements of \(\{w_n\} \) are not only linearly independent but they also minimize the computations required to evaluate the inner product[13-16]. One such choice of the weighting functions may be to let the weighting and the basis function be the same, that is \(w_n = g_n \). This is called as the Galerkin’s Method as described by Kantorovich and Akilov [19]. From the antenna theory point of view, we can write the Electric field integral equation as:

\[E = f_e(J) \]

where \(E \) is the known incident electric field.

\(J \) is the unknown induced current.

\(f_e \) is the linear operator.

The first step in the moment method solution process would be to expand \(J \) as a finite sum of basis function given as:

\[J = \sum J_i b_i \]

where \(b_i \) is the \(i \)th basis function and \(J_i \) is an unknown coefficient. The second step involves the defining of a set of \(M \) linearly independent weighting functions, \(w_j \). Taking the inner product on both sides and substituting equation (3.19) in equation (3.18) we get:
\[(w_j, E) = \sum_{i=1}^{M} (w_j, f_e(J, \hat{b}_i))\]

where \(j = 1, 2, \ldots, M\)

Writing in Matrix form as,

\[
\begin{bmatrix}
Z_{ij}
\end{bmatrix}
\begin{bmatrix}
J
\end{bmatrix}
= \begin{bmatrix}
E_j
\end{bmatrix}
\]

Where

\[
Z_{ij} = \langle w_j, f_e(\hat{b}_i) \rangle
\]

\[
E_j = \langle w_j, H \rangle
\]

\(J\) is the current vector containing the unknown quantities.

The vector \(E\) contains the known incident field quantities and the terms of the \(Z\) matrix are functions of geometry[17-22]. The unknown coefficients of the induced current are the terms of the \(J\) vector. Using any of the algebraic schemes mentioned earlier, these equations can be solved to give the current and then the other parameters such as the scattered electric and magnetic fields can be calculated directly from the induced currents. The software used for this project work is a Method of Moments simulator.

3. FILTER THEORY.

Filter are two-port, reciprocal, passive, linear devices which attenuate heavily the unwanted signal frequencies while permitting transmission of unwanted frequencies[27-30]. The practical filters have a small non-zero attenuation in the pass band and a small signal output in the attenuation or the stop band due to the presence of resistive losses in reactive elements and propagating medium.

FILTER PARAMETERS.

In filter designing following important parameters are considered.

1. Pass bandwidth
2. Stop band attenuation and frequencies
3. Input and output impedances
4. Return loss
5. Insertion loss

The most important parameters among the above is the amplitude response given in terms of the insertion loss Vs frequency characteristics. Let \(P_i\) be the incident power at the filter input [23-26]. \(P_r\) is the reflected power, \(P_L\) is the power passed on to the load. The insertion loss of the filter is defined by,

\[
\text{IL (dB)} = 10 \log \left(\frac{P_i}{P_L} \right) = -10 \log (1 - |\Gamma|^2)
\]

Where \(P_L = P_i - P_r\), if the filter is lossless and \(\Gamma\) is the voltage reflection coefficient given by \(|\Gamma|^2 = P_r/P_i\)

The return loss of the filter is defined by

\[
\text{RL (dB)} = 10 \log \left(\frac{P_i}{P_r} \right) = -10 \log (|\Gamma|^2)
\]

which quantifies the amount of impedance matching at the input port.

The group delay is important for the multi-frequency or pulsed signals to determine the frequency dispersion or deviation from constant
group delay over a given frequency band and is defined by

\[T_d = \frac{1}{2\pi} \frac{d\Phi_t}{df} \]

Where \(\Phi_t \) is the transmission phase.

MULTIMODE RESONATOR FILTER

A microstrip-line multiple-mode resonator (MMR) is used design UWB bandpass filter[31-34]. At the central frequency of the UWB passband, i.e., 6.85 GHz, the MMR consists of one half-wavelength low-impedance line section in the center and two identical \(\lambda/4 \) high-impedance line sections at the two sides as shown below.

The MMR in the filter generates first and third resonant mode at the edges of the UWB pass band. The parallel-coupled lines are modified to obtain the ultra-wide pass band. This could be done by adjusting the coupling length, \(L_c \).

Result obtained Within the UWB passband, the measured insertion and return losses are lower than 2.0 dB and higher than 10.0 dB, respectively.

In recent years conventional microstrip band pass filters such as stepped-impedance filters, open-stub filters, semi lumped element filters, end- and parallel-coupled half-wavelength resonator filters, hairpin-line filters, interdigital and combine filters, pseudo combine filters, and stub-line filters are widely used in this parallel-coupled half-wavelength resonator filters are taken in consideration along with EBG structure based filter[35-36].

DESIGN OF PROPOSED UWB FILTERS

In this proposed model two uwb band pass filter are designed and simulated also compared with performance of EBG Embedded Multi Mode Resonator BPF. All BPFs are fabricated with thickness of 0.635 mm on an RT/Duroid substrate with a dielectric constant of 10.2. The schematics of uniplanar compact–EBG (UC–EBG) structure and a periodic UC–EBG (PUC–EBG) structure are shown in fig 2. The interdigital coupled lines used in all BPFs have a coupling peak at the center frequency of 6.85 GHz. Simple EBG Embedded Multi Mode Resonator UWB BPF is also shown in fig 2. There simulation as been done using ADS Momentum simulator.

![Fig 1. Uniplanar compact–EBG (UC–EBG) structure BPF](image1)

![Fig 2. Uniplanar compact–EBG (UC–EBG) structure BPF](image2)
For Frequency range between 3.1 to 10.6GHz

<table>
<thead>
<tr>
<th>EBG structures</th>
<th>Insertion loss dB</th>
<th>Length of the filter mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foliated UC-EBG</td>
<td>Less than 2dB</td>
<td>12.82mm</td>
</tr>
<tr>
<td>UC-EBG</td>
<td>0dB</td>
<td>9.5mm</td>
</tr>
</tbody>
</table>

CONCLUSION & FUTURE WORK

In this, two UWB BPFs with EBG structures are investigated and simulated. The results have been compared by simulated using ADS Momentum simulator. The future work is towards improving the good out-of-band performances and other EBG structure to reduce the overall size of the filter. Also to improve the performances of EBG by using defected ground plane.

REFERENCE

526
36. Lakshmi C., Ponnavaikko M., Sundararajan M., Improved kernel common vector method for face recognition varying in background conditions, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), V-6026 LNCS, PP-175-186, 2010