SIMULATION OF CASCADED MULTICELL TRANS-Z-SOURCE INVERTER
Dr.S.Prakash, Dr.J.Hameed Hussain Professor & Head
Professor & Head, BIST, Bharath Institute of Higher Education and Research, Bharath University

Abstract: Inverters with high-output voltage gain usually face the problem of high-input current flowing through their components. The problem might further be exaggerated if the inverters use high-frequency magnetic devices like transformers or coupled inductors. Leakage inductances of these devices must strictly be small to prevent overvoltage’s caused by switching of their winding currents. To avoid these related problems, cascaded trans-Z-source inverters are proposed. They use multiple magnetic cells in an alternately cascading pattern rather than a single magnetic cell with large turn’s ratio. The Z-source dc–ac inverter was proposed before various Z-source dc–dc converters surfaced.

INTRODUCTION

Traditional voltage-source inverter (VSI) and current source inverter (CSI) are either a buck or a boost converter and not a buck-boost converter. That is, their obtainable output voltage range is limited to either more or less than the input voltage. Z-source inverter has the following advantages [1-8]It uses an exclusive impedance network coupled between the source and the converter circuit which consists of inductors and capacitors (L1, L2 and C1 , C2) connected in X shape. The X-arms connects the inverter to a DC voltage source.

Proposed system:

Here the dc to dc converter is used to boost up the input dc voltages. The dc to dc converter contains an additional inductance. Here we are using multi cell cascaded Z-sourceinverter circuit so the dc link voltage
droops will be low. Microcontroller circuits are used to generate the PWM signals to drive the dc to dc boost converter and the inverter circuit[9-14].

A uniqueness of PWM control in ZSI is the ability of the shoot-through state to boost to a desired output voltage (greater than available dc-link voltage) and under single stage process. Maximum Boost PWM, Maximum Constant PWM, Modified Space Vector PWM and Sine Carrier PWM

A. Simple boost control

When the triangular carrier waveform is greater than the upper envelope, \(V1 \), or lowers than the bottom envelope, \(V2 \), the circuit turns into shoot-through state. Otherwise it operates just as traditional carrier-based PWM. However, greater voltage stress on the devices is due to small modulation indices. As the modulation index is raises, the switching frequency of the inverter also raises and hence the switching losses.

B. Maximum boost control

Z-source Inverter :
Maximum boost control utilizes all traditional zero states into shoot-through state, however, doing so also causes a shoot-through duty ratio varying in a line cycle, which causes inductor current ripple[15-18]. This method of control produces the output voltage and current with better harmonic profile. Z-source inverter circuit with the help of this high voltage gains are obtained while keeping the current and voltage components low. Stress on the semiconductor devices will be less.

Circuit diagram:

An alternative way of realizing the trans-Z-source inverter with high gain. Instead of a transformer with high turns ratio as in multiple smaller transformers with lower turns ratios are used[19-24]. Their W1 windings are connected in parallel to share.
the extreme high instantaneous current stress,
Turns ratios of these smaller transformers
should be chosen based on available core and
wire sizes that can more readily produce
better coupling. Besides transformers, the
circuit shows multiple diodes and capacitors
connected in

For cases where component
parameters drifted greatly. With capacitors,
it should also be noted that the smallest
capacitance endures the highest voltage
which might unintentionally create a single
point of failure [25-29]. Balancing resistors
for capacitors (and diodes), together with
their losses, are therefore almost always
added to the circuit for long term usage. To
avoid direct series connection, an alternate
cascading technique is discussed after
describing the generic trans-Z-source cell

1) Begin with cell 1 with its windings
labeled as \(W_1 \) and \(W_2 \);
2) duplicate a copy of cell 1, and name it as
cell 2. Windings of cell 2 are labeled as \(W_2 \) and \(W_3 \) with their turns ratio marked as \(\gamma_3 \);
3) flip cell 2 vertically and place it below
cell 1;
4) Merge cell 1 and cell 2 with \(W_2 \) of cell 1
replacing \(W_2 \) of cell 2;
5) shift \(W_2 \) of cell 2 to be in parallel with
\(W_1 \) of cell 1;
6) Duplicate cell \(k \) with windings \(W_{1k} \) and
\(W_{(k+1)} \), and turns ratio \(\gamma_{k+1} \);

MATLAB-SIMULATION

MATLAB is a high-performance
language for technical computing. It
integrates computation, visualization, and
programming in an easy-to-use environment
where problems and solutions are expressed
in familiar mathematical notation [30].

SIMPOWER SYSTEMS LIBRARIES

The libraries contain models of
typical power equipment such as
transformers, lines, machines, and power
electronics. The capabilities of Sim Power Systems for modeling a typical electrical system are illustrated in demonstration files. And for users who want to refresh their knowledge of power system theory, there are also self-learning case studies. The Sim Power Systems main library, power lib, organizes its blocks into libraries according to their behavior[31-33]. The power library window displays the block library icons and names. This is possible because all the electrical parts of the simulation interact with the extensive Simulink modeling library. Since Simulink uses MATLAB as its computational engine, designers can also use MATLAB toolboxes and Simulink.

Conclusion

A generic trans-Z-source cell is presented, which can be duplicated and alternately cascaded to form various CMC trans-Z-source inverters with different source placements. Although the inverters use multiple components to tolerate higher voltage gains, they do not rely on direct series connections of the components[34-36]. Common voltage sharing problems that vary randomly with parameters are therefore not experienced by the proposed CMC trans-Z-source inverters. Moreover, by using smaller coupled transformers with lower turn’s ratios, the proposed inverters divide their instantaneous current stresses among windings better. Performances and practicalities of the inverters have already been verified in simulation and experiment.

References:

35. Kanniga E., Selvaramaratham K., Sundararajan M., Kandigital bike operating system, Middle - East Journal
36. Lakshmi C., Ponnavaikko M., Sundararajan M., Improved kernel common vector method for face recognition varying in background conditions, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), V-6026 LNCS, PP-175-186, 2010

