Properties of Δ^*-Locally Closed Sets
In Topological Spaces

K.Meena1 and K.Sivakamasundari2

1Department of Mathematics,
Kumaraguru College of Technology,
Coimbatore, TamilNadu, India.
meenarajarajan@yahoo.in

2Department of Mathematics,
Avinashilingam University,
Coimbatore, TamilNAdu, India.
sivanath2011@gmail.com

December 19, 2017

Abstract

The objective of this paper is to analyze the properties of Δ^*-locally closed sets in topological spaces. Further as an application of Δ^*-locally closed sets, two spaces named as Δ^*-door space and Δ^*-submaximal spaces are also introduced and investigated in this paper.

AMS Subject Classification: 54A05

Key Words and Phrases: Δ^*-closed set, Δ^*-locally closed set, Δ^*-door space, Δ^*-submaximal space, Δ^*-irresolute map.

1 Introduction

The study of locally closed sets was initiated by Bourbaki [1] in the year 1966. The definition and the notation of locally closed sets were established by M.Ganster et.al., [6] in 1989. This idea was
extended to generalised closed sets and named as generalised locally closed sets by K.Balachandran.et.al.,[2] in 1966. Since then several significant concepts based on locally closed sets have been done by many researchers. In this paper, three types of locally closed sets namely, Δ^*lc-sets, Δ^*lc^*-sets and Δ^*lc^{**}-sets and two new spaces namely, Δ^*-Door space and Δ^*-submaximal space using Δ^*-closed sets were introduced and discussed their nature in topological spaces. Further we proved some applications of these new class of locally closed sets using separation axioms of Δ^*-closed sets. Throughout this paper (X, τ) denotes a topological space on which no separation axioms are stated unless or otherwise specified.

Remark: In 2014, a new class of closed sets namely, Δ^*-closed sets [8] were introduced and initially denoted by $\delta(\delta g)^*$-closed sets by the authors.

2 Preliminaries

Definition 1. Let M be a subset of a topological space (X, τ).

i) If $M = \text{int}(\text{cl}(M))$ then M is called a regular open set.[15]

ii) If M is the union of regular open sets then M is called a δ-open set.[14]

iii) If $\text{cl}(M) \subseteq R$ whenever $M \subseteq R$ where R is open in (X, τ) then M is called a generalised closed set (denoted as g-closed set) in (X, τ). [7]

iv) If $\delta \text{cl}(M) \subseteq R$ whenever $M \subseteq R$ where R is open in (X, τ) then M is called a δ-generalised closed set (denoted as δg-closed set) in (X, τ). [3]

v) If $\text{cl}(M) \subseteq R$ whenever $M \subseteq R$ where R is δ-open in (X, τ) then M is called a generalised δ-closed set (denoted as $g\delta$-closed set) in (X, τ). [4]

vi) If $\text{cl}(M) \subseteq R$ whenever $M \subseteq R$ where R is π-open in (X, τ) then M is called a π-generalised closed set (denoted as πg-closed set) in (X, τ).
vii) If \(\delta cl(M) \subseteq R \) whenever \(M \subseteq R \) where \(R \) is \(\delta g \)-open in \((X, \tau)\) then \(M \) is called a \(\Delta^* \)-closed set in \((X, \tau)\).

Definition 2. Let \(M \) be a subset of a topological space \((X, \tau)\). Then the \(\Delta^* \)-closure operator \([9]\) of \(M \) in \((X, \tau)\) is denoted by \(\Delta^* cl(M) \) and defined as below.

\[
\Delta^* cl(M) = \bigcap \{ S \subseteq X : M \subseteq S \text{ and } S \text{ is } \Delta^* \text{-closed in } (X, \tau) \}.
\]

Definition 3. If every \(g \delta \)-closed subset of \((X, \tau)\) is \(\Delta^* \)-closed in \((X, \tau)\) then \((X, \tau)\) is said to be a \(gT_{\Delta^*} \)-space\([10]\).

Definition 4. A map \(f : (X, \tau) \rightarrow (Y, \delta) \) is called \(\Delta^* \)-irresolute if \(f^{-1}(G) \) is a \(\Delta^* \)-open set in \((X, \tau)\) for every \(\Delta^* \)-open set \(G \) in \((Y, \sigma)\)\([12]\).

Remark 1. If \(M \) is \(\delta g \)-open as well as \(\Delta^* \)-closed set of \((X, \tau)\) then \(M \) is a \(\delta \)-closed set of \((X, \tau)\)\([13]\).

Remark 2. The intersection of two \(\Delta^* \)-open sets is a \(\Delta^* \)-open set\([13]\).

Remark 3. Every \(\Delta^* \)-open set is a \(\pi g \)-open set\([13]\).

3 Properties of \(\Delta^* \)-Locally Closed Sets

Definition 5. Consider a subset \(M \) of \((X, \tau)\). Then it is said to be

a) \(\Delta^* \)-locally closed set, i.e., \(\Delta^* lc \)-set if there exists a \(\Delta^* \)-open set \(R \) and a \(\Delta^* \)-closed set \(S \) of \((X, \tau)\) such that \(M = R \cap S \).

b) \(\Delta^* lc^* \)-set if there exists a \(\Delta^* \)-open set \(R \) and a \(\delta \)-closed set \(S \) of \((X, \tau)\) such that \(M = R \cap S \).
c) Δ^*lc^{**}-set if there exists a δ-open set R and a Δ^*-closed set S of (X, τ) such that $M = R \cap S$.

The collection of all Δ^*lc (resp., Δ^*lc^*-sets, Δ^*lc^{**}) sets of (X, τ) is represented by $\Delta^*LC(X, \tau)$ (respectively $\Delta^*LC^*(X, \tau)$, $\Delta^*LC^{**}(X, \tau)$).

Proposition 1. In (X, τ) the following inclusions are proved.

a) $\delta LC(X, \tau) \subseteq \Delta^*LC(X, \tau)$.

b) $\delta LC(X, \tau) \subseteq \Delta^*LC^*(X, \tau) \subseteq \Delta^*LC(X, \tau)$.

c) $\delta LC(X, \tau) \subseteq \Delta^*LC^{**}(X, \tau) \subseteq \Delta^*LC(X, \tau)$.

Proof. Using the result that every δ-closed set is Δ^*-closed set in (X, τ). [8], the proof can be observed.

Remark 4. The reverse implications of the above results are not true as seen from the following example.

Counter Example 1. Let $X = \{t_1, t_2, t_3\}$ and $\tau = \{\phi, X, \{t_1\}\}$. Then $\delta LCX, \tau) = \{\phi, X\}$; $\Delta^*LC(X, \tau) = \{\phi, X, \{t_1\}, \{t_2, t_3\}\}$; $\Delta^*LC^*(X, \tau) = \{\phi, X, \{t_1\}\}$; $\Delta^*LC^{**}(X, \tau) = \{\phi, X, \{t_2, t_3\}\}$.

Remark 5. It can be viewed by the above example that $\Delta^*LC^*(X, \tau)$ and $\Delta^*LC^{**}(X, \tau)$ are independent.

Proposition 2. If $\Delta^*C(X, \tau) \subseteq \delta GO(X, \tau)$ then $\Delta^*LC^{**}(X, \tau) = \delta LC(X, \tau)$.

Proof. By Proposition 1(b), $\delta LC(X, \tau) \subseteq \Delta^*LC^{**}(X, \tau)$—(1). Let M be a Δ^*lc^{**}-set. Then there exists a δ-open set R and a Δ^*-closed set S of X such that $M = R \cap S$. By the assumption S is δg-open. Therefore S is δ-closed set of X. [Remark 1]. Thus M is δlc-set and $\Delta^*LC^{**}(X, \tau) \subseteq \delta LC(X, \tau)$ ———(2). Hence from (1) and (2), $\Delta^*LC^{**}(X, \tau) = \delta LC(X, \tau)$.

\[\square\]
Proposition 3. If M is a subset of (X, τ) and if $M \in \Delta^* LC(X, \tau)$ then $M = R \cap \Delta^* cl(M)$ for some Δ^*-open set R in (X, τ).

Proof. Let $M \in \Delta^* LC(X, \tau)$. Then there exists a Δ^*-open set R and a Δ^*-closed set S of X such that $M = R \cap S$. Since $M \subseteq R$ and $M \subseteq \Delta^* cl(M)$, $M \subseteq R \cap \Delta^* cl(M)$ ——– (1). Conversely by the definition of Δ^*-closure, $\Delta^* cl(M) \subseteq S$ and hence $R \cap \Delta^* cl(M) \subseteq R \cap S = M$ ——– (2). Therefore from (1) and (2), $M = R \cap \Delta^* cl(M)$.

Proposition 4. For a subset M of (X, τ), if $M \in \Delta^* LC^{**}(X, \tau)$ then $M = R \cap \Delta^* cl(M)$ for some δ-open set R in (X, τ).

Proof. Let $M \in \Delta^{**} LC(X, \tau)$. Then by the definition, $M = R \cap S$ where R is a δ-open set and S is a Δ^*-closed set containing M. Since S is a Δ^*-closed set, $\Delta^* cl(M) \subseteq S$ which implies that $R \cap \Delta^* cl(M) \subseteq R \cap S = M$. Since $M \subseteq R$ and $M \subseteq \Delta^* cl(M)$, $M \subseteq R \cap \Delta^* cl(M)$. Therefore $M = R \cap \Delta^* cl(M)$ where R is a δ-open set in (X, τ).

Proposition 5. The following results are true for any two subsets M and N of (X, τ).

a) If $M, N \in \Delta^* LC^*(X, \tau)$, then $M \cap N \in \Delta^* LC^*(X, \tau)$.

b) If $M \in \Delta^* LC(X, \tau)$ and N is Δ^*-open then $M \cap N \in \Delta^* LC(X, \tau)$.

c) If $M \in \Delta^* LC^{*}(X, \tau)$ and N is Δ^*-open then $M \cap N \in \Delta^* LC^{*}(X, \tau)$.

d) If $M \in \Delta^* LC^{**}(X, \tau)$ and N is Δ^*-open then $M \cap N \in \Delta^* LC^{**}(X, \tau)$.

Proof. a) Follows from the fact that the intersection of two Δ^*-open sets is Δ^*-open and by the Remark 2.

b) and c) Follows from the fact that the intersection of two Δ^*-open sets is Δ^*-open.

d) Follows from the fact that the intersection of δ-open and Δ^*-open sets is Δ^*-open.[13].
4 Applications of \(\Delta^* \)-Locally Closed Sets

Definition 6. A subset \(M \) of \((X,\tau) \) is called a \(\Delta^* \)-dense set if \(\Delta^*\text{cl}(M) = X \).

Example 1. Let \(X = \{t_1, t_2, t_3\} \) and \(\tau = \{\phi, X, \{t_1\}, \{t_1, t_2\}\} \). Then the \(\Delta^* \)-dense sets are \(X \) and \(\{t_1, t_2\} \).

Proposition 6. In a topological space \((X,\tau) \), every \(\Delta^* \)-dense set is a \(\delta \)-dense set but the converse is not true.

Proof. Let \(M \) be a \(\Delta^* \)-dense set in \((X,\tau) \). Then \(\Delta^*\text{cl}(M) = X \).

Since \(\Delta^*\text{cl}(M) \subseteq \delta\text{cl}(M) \), \(\delta\text{cl}(M) = X \). Hence \(M \) is \(\delta \)-dense. \(\Box \)

Counter Example 2. Let \(X = \{t_1, t_2, t_3\} \) and \(\tau = \{\phi, X, \{t_1\}, \{t_1, t_2\}\} \). Then the subset \(\{t_3\} \) is \(\delta \)-dense in \((X,\tau) \) but not \(\Delta^* \)-dense set in \((X,\tau) \) since \(\Delta^*\text{cl}\{t_3\} = \{t_3\} \neq X \) whereas \(\Delta^*\text{cl}\{t_1, t_2\} = X \).

Proposition 7. In a topological space \((X,\tau) \), every \(\pi g \)-dense set is \(\Delta^* \)-dense set but not conversely.

Proof. Let \(M \) be a \(\pi g \)-dense set in \(X \). Then \(\pi g\text{cl}(M) = X \).

Since \(\pi g\text{cl}(M) \subseteq \Delta^*\text{cl}(M) \), \(\Delta^*\text{cl}(M) = X \). Hence \(M \) is \(\Delta^* \)-dense. \(\Box \)

Counter Example 3. Let \(X = \{t_1, t_2, t_3\} \) and \(\tau = \{\phi, X, \{t_1\}\} \).

Then the subset \(\{t_1, t_2\} \) is \(\Delta^* \)-dense but not \(\pi g \)-dense since \(\pi g\text{cl}\{t_1, t_2\} = \{t_1\} \neq X \).

Definition 7. A topological space \((X,\tau) \) is said to be a \(\Delta^* \)-door space if each subset of \((X,\tau) \) is either \(\Delta^* \)-open or \(\Delta^* \)-closed in \((X,\tau) \).
Example 2. Let $X = \{t_1, t_2, t_3\}$ and $\mathcal{V} = \{\phi, X, \{t_1\}, \{t_1, t_2\}\}$. Then (X, τ) is a Δ^*-door space.

Remark 6. If (X, τ) is a Δ^*-door space then $\Delta^*LC(X, \tau) = P(X)$.

Definition 8. A topological space (X, τ) is said to be a Δ^*-submaximal (resp., Δ^{**}-submaximal) space if every Δ^*-dense (resp., δ-dense) subset is Δ^*-open in (X, τ).

Proposition 8. Every Δ^*-submaximal space is a πg-submaximal space but not conversely.

Proof. Let (X, τ) be a Δ^*-submaximal space and M is πg-dense subset of (X, τ). Since every πg-dense subset is Δ^*-dense (Proposition 7), M is Δ^*-dense and M is Δ^*-open. Therefore M is πg-open. [Remark 3]. Hence (X, τ) is a πg-submaximal space.

Counter Example 4. Let $X = \{t_1, t_2, t_3\}$ and $\tau = \{\phi, X, \{t_1\}\}$. Then (X, τ) is πg-submaximal space but not a Δ^*-submaximal space since the subset $\{t_1, t_2\} \in (X, \tau)$ is Δ^*-dense but not Δ^*-open.

Proposition 9. Every Δ^{**}-submaximal space is a Δ^*-submaximal space but not conversely.

Proof. Let (X, τ) be a Δ^{**}-submaximal space and M be a Δ^*-dense subset of (X, τ). By Proposition 6, M is δ-dense in (X, τ). By the assumption, M is Δ^*-open and hence (X, τ) is a Δ^*-submaximal space.

Counter Example 5. Let $X = \{t_1, t_2, t_3\}$ and $\mathcal{V} = \{\phi, X, \{t_1, t_2\}\}$. Then (X, τ) is a Δ^*-submaximal as the Δ^*-dense subsets X and $\{t_1, t_2\}$ are Δ^*-open. But (X, τ) is not a Δ^{**}-submaximal since the
subset \{t_1, t_2\} in (X, \tau) is \(\delta\)-dense but not \(\Delta^*\)-open in \((X, \tau)\).

Proposition 10. Let \(f : (X, \tau) \to (Y, \sigma)\) be a \(\Delta^*\)-irresolute map. Then the following statements are true.

a) If \(N \in \Delta^*LC(Y, \sigma)\) then \(f^{-1}(N) \in \Delta^*LC(X, \tau)\).

b) If \(N \in \Delta^*LC(Y, \sigma)\) then \(f^{-1}(N) \in g\delta LC(X, \tau)\).

c) If \(N \in g\delta LC(Y, \sigma)\) and \((Y, \sigma)\) is a \(g\delta T_{\Delta^*}\)-space then \(f^{-1}(N) \in \Delta^*LC(X, \tau)\).

Proof. Let \(f : (X, \tau) \to (Y, \sigma)\) be a \(\Delta^*\)-irresolute map.

a) \(N \in \Delta^*LC(Y, \sigma)\). Then there exists a \(\Delta^*\)-open set \(G\) and \(\Delta^*\)-closed set \(H\) such that \(N = G \cap H\) which implies that \(f^{-1}(N) = f^{-1}(G) \cap f^{-1}(H)\). Since \(f\) is \(\Delta^*\)-irresolute, \(f^{-1}(G)\) and \(f^{-1}(H)\) are \(\Delta^*\)-open and \(\Delta^*\)-closed respectively. Hence \(f^{-1}(N) \in \Delta^*LC(X, \tau)\).

b) Let \(N \in \Delta^*LC(Y, \sigma)\). Then there exists a \(\Delta^*\)-open set \(G\) and \(\Delta^*\)-closed set \(H\) such that \(N = G \cap H\) which implies that \(f^{-1}(N) = f^{-1}(G) \cap f^{-1}(H)\). Since \(f\) is \(\Delta^*\)-irresolute, \(f^{-1}(G)\) and \(f^{-1}(H)\) are \(\Delta^*\)-open and \(\Delta^*\)-closed respectively. Since every \(\Delta^*\)-closed is \(g\delta\)-closed [8], \(f^{-1}(G)\) and \(f^{-1}(H)\) are \(g\delta\)-open and \(g\delta\)-closed respectively. Therefore \(f^{-1}(N) \in g\delta LC(X, \tau)\).

c) Let \(N \in g\delta LC(Y, \sigma)\). Then there exists a \(g\delta\)-open set \(G\) and a \(g\delta\)-closed set \(H\) in \((Y, \sigma)\) such that \(N = G \cap H\). Since \((Y, \sigma)\) is a \(g\delta T_{\Delta^*}\)-space, \(G\) is \(\Delta^*\)-open and \(\Delta^*\)-closed also. Then \(N \in \Delta^*LC(Y, \sigma)\). Hence by the result (a), \(f^{-1}(N) \in \Delta^*LC(X, \tau)\).

\(\square\)

References

