The Reciprocal S-Prime Meet Matrices on Posets

N. Elumalai¹ and R. Anuradha²

¹,²Department of Mathematics, A.V.C. College (Autonomous), Mannampandal, Mayiladuthurai, Tamilnadu, India.
anuakshadha@gmail.com

Abstract

We consider Reciprocal S-Prime Meet Matrices on Posets as an abstract generalization of Reciprocal S-Prime greatest common divisor (Reciprocal S Prime GCD) matrices. We also found determinant and inverse and discuss the some of the most important properties of Reciprocal S-Prime GCD matrices are presented in terms of Meet Matrices.

AMS Subject Classification: 11AXX, 11A05, 11A25, 11A41.

Key Words and Phrases: Lattice, S-prime meet, reciprocal Sprime meet, arithmetical functions and Mobius function.

1 Introduction

Let \(S = \{x_1, x_2, x_3, \ldots, x_n\} \) be a set of n-positive integers with \(x_1 < x_2 < x_3 < \cdots < x_n \) and let \(f: p \rightarrow \mathbb{C} \) be a complex valued function on \(\mathbb{Z}_+ \) (i.e., arithmetical function). Let \((x_i, x_j) \) denotes the greatest common divisor (GCD) of \(x_i \) and \(x_j \) and define the nxn matrices \((S)_f = ((S)_f)_{i,j} = f(x_i, x_j) \). We refer to \((S)_f \) as the GCD matrix on S with respect to f. The set \(S \) is said to be factor closed if it contains every positive divisor of each \(x_i \in S \) clearly a factor closed set is always GCD-closed and the converse does not hold. In 1876, the concept of classical Smith determinant with entries on \(\mathbb{Z}_+ \) was introduced by H.J.S. Smith [11] is,

\[
\det[(x_i, x_j)]_{n\times n} = \Phi(x_1) \Phi(x_2) \Phi(x_3) \ldots \Phi(x_n)
\]

\[
= \prod_{i=1}^{n} \Phi(x_i)
\]

where \(\phi \) is the Euler’s totient function. The GCD matrix with respect to \(f \) is,

\[
(f(x_i, x_j)) = \begin{bmatrix}
 f(x_1, x_1) & f(x_1, x_2) & \cdots & f(x_1, x_n) \\
 f(x_2, x_1) & f(x_2, x_2) & \cdots & f(x_2, x_n) \\
 \vdots & \vdots & \ddots & \vdots \\
 f(x_n, x_1) & f(x_n, x_2) & \cdots & f(x_n, x_n)
\end{bmatrix}
\]
and \(\det[f(x_i, x_j)] = \prod_{k=1}^{n} (f \ast \mu)(x_k) \). In [1992], S.Beslin and S.Ligh [5] generalized in this results on GCD matrices by showing that the determinant of the GCD Matrix on a GCD closed set \(S = \{x_1, x_2, x_3, \ldots, x_n\} \) is the product \(\prod_{k=1}^{n} (\alpha_k) \) where \(\alpha_k = \sum_{d|\{x_k, d|x_k\}} \Phi(d) \). Let \(S = \{x_1, x_2, x_3, \ldots, x_n\} \) be a set of distinct positive integers and the \(n \times n \) matrix \((S)_{ij} = (S_{ij})\) clearly \((S_{ij}) = \frac{1}{4(x_i, x_j)+1} \), call it to be reciprocal S-prime GCD matrix on \(S \). If \(S \) is factor closed set then, \(\det_S = \prod_{i=1}^{n} g(x_i) \) where \(g(n) = \sum_{d|n} \frac{1}{d+1} (\mu(n/d)) \). In this paper describes an abstract generalization of Reciprocal S-prime GCD matrices, namely Reciprocal S-prime Meet Matrices on Posets. Some of the most important properties of Reciprocal S-prime GCD-matrices are presented in terms of Meet Matrices.Further, we found the determinant and inverse of the Reciprocal S-prime Meet Matrices.

2 Definition of Reciprocal S-Prime Meet Matrices

Definition 1. Let \((p, \prec) = (\mathbb{Z}^+, |)\) be a finite poset. We call \(P \) be a meet-semi lattice if for any \(x, y \in p \) there exist a unique \(z \in p \) such that (i) \(z \leq x \) and \(z \leq y \) and (ii) If \(w \leq x \) and \(w \leq y \) for some \(w \in p \) then \(w \leq z \). In such a case \(z \) is called the meet of \(x \) and \(y \) is denoted by \(x \land y \).

Definition 2. Let \(S \) be a subset of \(p \), we call \(S \) be a lower-closed if for every \(x, y \in p \) and \(x \in S \) and \(y \leq S \), we have \(y \in S \).

Definition 3. Let \(S \) be a subset of \(P \) then \(S \) is said to be meet-closed if for every \(x, y \in S \), we have \(x \land y \in S \). In this case \(S \) itself is a meet lattices. It is clear that a lower-closed subset of a meet semi-lattice is always meet-closed but not conversely. The concept “lower-closed” and “Meet-closed” are generalization of “factor-closed” and “GCD-closed” respectively. In what follows, let \(P \) always denotes a finite meet lattice, \(S \) a poset that can be embedded in a Meet-semi lattice and \(\bar{S} \) the unique minimal meet semi-lattice containing \(S \).

Definition 4. Let \(x \) and \(y \) be two elements the poset \(P \) and \(\mu \) is the mobius function of the poset \((S, \prec)\) then

\[
\mu(x, y) = \begin{cases}
0 & \text{if } x \neq y \\
1 & \text{if } x = y \\
-\sum_{z: z \leq y} \mu(x, z) & \text{otherwise}
\end{cases}
\]

Definition 5. Let \(S = \{x_1, x_2, \ldots, x_n\} \) be a subset of \(P \) the \(n \times n \) matrix \((s)_{ij} = ((s)_{ij})_{ij} = (f_{ij})\), where \(f_{ij} = \frac{1}{4(x_i, x_j)+1} \) is called the Reciprocal S-prime Meet Matrix on \(S \) with respect to \(f \).
3 Determinant of the Reciprocal S-Prime Meet Matrices

Theorem 6. Let \(S = \{x_1, x_2, \ldots, x_n\} \) be a meet-closed subset of \(P \). Then
\[
\det(S) = g(x_1) g(x_2) \ldots g(x_n),
\]
where \(g(x_i) \) defined by
\[
g(x_i) = \frac{1}{4 x_i + 1} - \sum_{x_j \leq x_i} g(x_j).
\]

Corollary 7. Let \(S = \{x_1, x_2, \ldots, x_n\} \) be a lower-closed subset of \(P \). Then
\[
\det(S) = g(x_1) g(x_2) \ldots g(x_n),
\]
where \(g(x_i) \) defined by
\[
g(x_i) = \sum_{x_j \leq x_i} \mu(x_j, x_i)
\]
or equality \(f(x_i) = \sum g(x_j) \), \(\mu \) being the Mobius function of \(P \).

Example 8. Let \(S = \{1, 2\} \) be a lower-closed set and \((S, |) \) is a Poset. Then by using the Definition 2.5, we have the \(2 \times 2 \) Reciprocal S-Prime Meet Matrix on \(S \).

\[
(S) = \begin{bmatrix}
\frac{1}{4(1 \wedge 1) + 1} & \frac{1}{4(1 \wedge 2) + 1} \\
\frac{1}{4(2 \wedge 1) + 1} & \frac{1}{4(2 \wedge 2) + 1}
\end{bmatrix}
= \begin{bmatrix}
\frac{1}{5} & \frac{1}{5} \\
\frac{1}{5} & \frac{1}{5}
\end{bmatrix}
\]

\[
\det(S) = g(1) g(2) = g(1) g(2)
\]

By using the definition of \(g \) and \(\mu(x, y) \) we obtain:
\[
g(x_1) = g(1) = \sum_{x_j \subseteq x_1} \frac{1}{4 x_j + 1} \mu(x_j, 1)
\]
\[
= \frac{1}{4(1) + 1} \mu(1, 1)
\]
\[
= \frac{1}{5} (1) = \frac{1}{5}
\]
\[
g(x_2) = g(2) = \sum_{x_j \subseteq x_2} \frac{1}{4 x_j + 1} \mu(x_j, 2)
\]
\[
= \frac{1}{4(1) + 1} \mu(1, 2) + \frac{1}{4(2) + 1} \mu(2, 2)
\]
\[
= \frac{1}{5} (-1) + \frac{1}{9} (1) = -\frac{4}{45}
\]
\[
\det(S) = g(1) g(2) = \frac{1}{5} - \frac{4}{45}
\]
\[
= \frac{-4}{225}
\]

Definition 9. Let \(S = \{x_1, x_2, \ldots, x_n\} \) and \(T = \{y_1, y_2, \ldots, y_m\} \) be any two subsets of \(P \). Define the incidence matrix \(E(S, T) \) of \(S \) and \(T \) as an \(n \times m \) matrix whose \(i, j \) entry is 1 if \(y_j \leq x_i \) and zero otherwise namely. That is, \(E(S, T) = (e_{i,j})_{n \times m} \), where
\[
e_{i,j} = \begin{cases}
1, & \text{if } y_j \leq x_i \\
0, & \text{otherwise}
\end{cases}
\]

Theorem 10. Let \(S = \{x_1, x_2, \ldots, x_n\} \) be a subset of \(P \) with \(\bar{S} = \{x_1, x_2, \ldots, x_n, x_{n+1}, \ldots, x_{n+r}\} \). Let \(g \) be a function on \(\bar{S} \) defined as in Theorem 3.1. Then
\[
(S) = E \cdot \text{diag}(g(x_1), \ldots, g(x_{n+r})) \cdot E^T
\]
Theorem 11. Let S, \bar{S}, f and g be as in Corollary 3.2. Then
\[\det(S) = \sum_{1 \leq k_1 < \cdots < k_n \leq n+r} \det(E_{(k_1, \ldots, k_n)})^2 g(x_{k_1}) \cdots g(x_{k_n}) \]
where $E_{(k_1, \ldots, k_n)}$ is the sub matrix of $E = E(S, \bar{S})$ consisting of the k_1^{th}, k_2^{th}, \ldots, k_n^{th} columns of E. Furthermore; if g is a function with positive values then
\[\det(S) \geq g(x_1) g(x_2) \cdots g(x_n) \]
and the equality holds if and only if S is meet-closed.

4 Inverse of Reciprocal S-Prime Meet Matrices

Theorem 12. Let $S = \{x_1, x_2, \ldots, x_n\}$ be a lower-closed subset of P and let $g(x_i) = \sum_{x_j \leq x_i} (4x_i + 1) \mu(x_j, x_i) \neq 0$ for all $x_j \in S$. Then (S) is invertible and $(S)^{-1} = (b_{ij})$, where
\[b_{ij} = \sum_{x_j \leq x_k, x_j \leq x_k} \frac{\mu(x_i, x_k) \mu(x_j, x_k)}{g(x_k)}. \]

Example 13. (S) is a Reciprocal S-Prime Meet Matrix on lower-closed set $S = \{1, 2\}$. By Theorem 4.1, $(S)^{-1} = B = (b_{ij})$ where using Example 3.3.
\[b_{11} = \sum_{1 \leq x_k} \frac{\mu(1, x_k) \mu(1, x_k)}{g(x_k)} \]
\[= \frac{\mu(1, 1)^2}{g(1)} + \frac{\mu(1, 2)^2}{g(2)} \]
\[= \frac{1^2}{5} + \frac{(-1)^2}{45} \]
\[= 5 + \frac{1}{45} \]
\[= \frac{20}{45} \]
\[= \frac{4}{45} \]
\[b_{11} = \frac{-25}{4} \]
\[b_{12} = \sum_{1 \leq x_k} \frac{\mu(1, x_k) \mu(2, x_k)}{g(x_k)} \]
\[= \frac{\mu(1, 2) \mu(2, 2)}{g(2)} \]
\[= \frac{(-1)(1)}{4} \]
\[b_{12} = \frac{45}{4} \]
Similarly,

\[b_{21} = b_{12} = \frac{45}{4} \]
\[b_{22} = \sum_{2|x_k} \frac{\mu(2, x_k) \mu(2, x_k)}{g(x_k)} \]
\[= \frac{\mu(2, 2)^2}{g(2)} \]
\[= \frac{1}{\frac{4}{45}} \]
\[b_{22} = -\frac{45}{4} \]

Therefore,

\[(S)^{-1} = B = \begin{bmatrix} \frac{-25}{4} & \frac{45}{4} \\ \frac{-25}{4} & \frac{45}{4} \end{bmatrix} \]

Acknowledgement

We thank the anonymous referees for their useful suggestions.

References

