QUOTIENT-3 CORDIAL LABELING FOR PATH RELATED GRAPHS-PART-I

P. Sumathi1, A. Mahalakshmi2, A. Rathi3
1Department of Mathematics,
C. Kandaswami Naidu College for Men, Anna Nagar, Chennai 600 102.
e-mail: sumathipaul@yahoo.co.in
2Department of Mathematics,
Srimuthukumaran Institute of Technology, Mangadu Chennai 600 122.
e-mail: mahalakshmia.math@gmail.com
3Department of Mathematics,
Dr. M.G.R. Educational and Research Institute, University, Maduravoyal, Chennai 600 095.
e-mail: rathi.math@drmgrdu.ac.in

Abstract

In this paper, a new type of labeling namely quotient-3 cordial labeling \(f \) is introduced. Let \(G(V,E) \) be a simple graph of order \(p \) and size \(q \). Let \(f : V(G) \rightarrow \mathbb{Z}_4 - \{0\} \) be a function. For each edge \(E(G) \) define the labeling \(f^* : E(G) \rightarrow \mathbb{Z}_3 \) by \(f^*(uv) = \left\lceil \frac{f(u)}{f(v)} \right\rceil \mod 3 \) where \(f(u) \geq f(v) \). The function \(f \) is called quotient-3 cordial labeling of \(G \) if the number of vertices labeled with \(i \) and the number of vertices labeled with \(j \) differ by at most 1, the number of edges labeled with \(k \) and the number of edges labeled with \(l \) differ by at most 1. \(1 \leq i, j \leq 3, i \neq j \) and \(0 \leq k, l \leq 2, k \neq l \).
Here we proved that \(P_n \) and some path related graphs like \(Y \)-tree, \((P_n; S_2)\) and \((P_n; C_3)\) are quotient-3 cordial graphs.

AMS Subject Classification: 05C78

Key Words and Phrases: Path, \(Y \)-tree, quotient-3 cordial graph.

1 Introduction

Here the graphs considered are finite, simple, undirected and non trivial. Graph theory has a good development in the graph labeling and has a broad range of applications. Refer Gallian [1] for more information. The cordial labeling concept was first introduced by Cahit [2]. \(H\)- and \(H_2\)-cordial labeling was introduced by Freeda S and Chellathurai R. S [3]. Mean Cordial Labeling was introduced by Albert William, Indra Rajasingh, and Roy S [4]. 3-product cordial labeling was introduced by Jeyanthi P and Maheswari A [5]. Quotient-3 cordial labeling was introduced by Sumathi P, Mahalakshmi A and Rathi A [6]. we follow [7] for notations and terminology. A graph \(G \) is said to be quotient-3 cordial graph if it receives quotient-3 cordial labeling. Let \(v_f(i) \) denotes the number of vertices labeled with \(i \) and \(e_f(k) \) denotes the number of edges labeled with \(k \), \(1 \leq i \leq 3 \), \(0 \leq k \leq 2 \).

2 Definitions

Definition 1. A \(Y \)-tree is a graph obtained from the path \(P_n \) by joining an edge to a vertex of the path \(P_n \) adjacent to an end vertex.

Definition 2. \((P_n; S_2)\) is a graph obtained by attaching the root of a star \(S_2 \) at each vertex of a path \(P_n \) through an edge.

Definition 3. A graph which is obtained from a path \(P_n \) by joining the vertex of a cycle \(C_3 \) to every vertex of a path through an edge is denoted by \((P_n; C_3)\)
3 Main Result

Definition 4. Let $G(V, E)$ be a simple graph of order p and size q. Let $f : V(G) \to \mathbb{Z}_4 - \{0\}$ be a function. For each edge set $E(G)$ define the labeling $f^* : E(G) \to \mathbb{Z}_3$ by $f^*(uv) = \left\lceil \frac{f(u)}{f(v)} \right\rceil \pmod{3}$ where $f(u) \geq f(v)$. The function f is called quotient-3 cordial labeling of G if the number of vertices labeled with i and the number of vertices labeled with j differ by at most 1, the number of edges labeled with k and the number of edges labeled with l differ by at most 1. $1 \leq i, j \leq 3$, $i \neq j$ and $0 \leq k, l \leq 2$, $k \neq l$.

Illustration 5. A quotient-3 cordial graph

![Figure 1:]

Theorem 6. All paths P_n are quotient-3 cordial graph.

Proof. Let $V(G) = \{u_i : 1 \leq i \leq n\}$ and $E(G) = \{(u_iu_{i+1}) : 1 \leq i \leq n - 1\}$
Here $|V(G)| = n$, $|E(G)| = n - 1$.
Define $f : V(G) \to \mathbb{Z}_4 - \{0\}$

Case (i): When $n \equiv 0, 1, 4, 5 \pmod{6}$
For i, $1 \leq i \leq n$
$f(u_i) = 1$, if $i \equiv 1, 2 \pmod{6}$
$f(u_i) = 3$, if $i \equiv 0, 3 \pmod{6}$
$f(u_i) = 2$, if $i \equiv 4, 5 \pmod{6}$

Case (ii): When $n \equiv 2 \pmod{6}$
Labeling of u_i, $1 \leq i \leq n - 1$ are similar to case (i).
Assign $f(u_n) = 3$.
Case (iii): When $n \equiv 3 \pmod{6}$
Labeling of $u_i, 1 \leq i \leq n - 2$ are similar to case (i).
Assign $f(u_{n-1}) = 3, f(u_n) = 2$.
Table 1 gives the quotient-3 cordial for path P_n

<table>
<thead>
<tr>
<th>Nature of n</th>
<th>$v_f(1)$</th>
<th>$v_f(2)$</th>
<th>$v_f(3)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n \equiv 0, 3 \pmod{6}$</td>
<td>$\frac{n}{3}$</td>
<td>$\frac{n}{3}$</td>
<td>$\frac{n}{3}$</td>
</tr>
<tr>
<td>$n \equiv 1, 4 \pmod{6}$</td>
<td>$(\frac{n-1}{3}) + 1$</td>
<td>$(\frac{n-1}{3})$</td>
<td>$(\frac{n-1}{3})$</td>
</tr>
<tr>
<td>$n \equiv 2 \pmod{6}$</td>
<td>$(\frac{n+1}{3})$</td>
<td>$(\frac{n+1}{3}) - 1$</td>
<td>$(\frac{n+1}{3}) - 1$</td>
</tr>
<tr>
<td>$n \equiv 5 \pmod{6}$</td>
<td>$(\frac{n-2}{3}) + 1$</td>
<td>$(\frac{n-2}{3}) + 1$</td>
<td>$(\frac{n-2}{3}) + 1$</td>
</tr>
</tbody>
</table>

Table 1:

<table>
<thead>
<tr>
<th>Nature of n</th>
<th>$e_f(0)$</th>
<th>$e_f(1)$</th>
<th>$e_f(2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n \equiv 0 \pmod{6}$</td>
<td>$\frac{n}{3} - 1$</td>
<td>$\frac{n}{3}$</td>
<td>$\frac{n}{3}$</td>
</tr>
<tr>
<td>$n \equiv 1, 4 \pmod{6}$</td>
<td>$(\frac{n-1}{3})$</td>
<td>$(\frac{n-1}{3})$</td>
<td>$(\frac{n-1}{3})$</td>
</tr>
<tr>
<td>$n \equiv 2 \pmod{6}$</td>
<td>$(\frac{n+1}{3})$</td>
<td>$(\frac{n+1}{3}) - 1$</td>
<td>$(\frac{n+1}{3}) - 1$</td>
</tr>
<tr>
<td>$n \equiv 3 \pmod{6}$</td>
<td>$\frac{n}{3}$</td>
<td>$\frac{n}{3} - 1$</td>
<td>$\frac{n}{3}$</td>
</tr>
<tr>
<td>$n \equiv 5 \pmod{6}$</td>
<td>$(\frac{n-2}{3}) + 1$</td>
<td>$(\frac{n-2}{3}) + 1$</td>
<td>$(\frac{n-2}{3}) + 1$</td>
</tr>
</tbody>
</table>

Theorem 7. The Y-tree is quotient-3 cordial for $n > 2$.

Proof. Let $V(G) = \{u, u_i : 1 \leq i \leq n \}$ and $E(G) = \{(u_i u_{i+1}), (uu_{n-1}) : 1 \leq i \leq n - 1\}$
Here $|V(G)| = n + 1, |E(G)| = n$.
Define $f : V(G) \to \mathbb{Z}_4 - \{0\}$
When $n = 3$, define $f(u_1) = f(u_2) = 1, f(u_3) = 3$ and $f(u) = 2$.
Clearly this gives the quotient-3 cordial.
When $n > 3$
In this, when $n \equiv 1 \pmod{6}, n \equiv 2 \pmod{6}, n \equiv 3 \pmod{6}, n \equiv 4 \pmod{6}$ and $n \equiv 5 \pmod{6}$
Labeling of $u_i, 1 \leq i \leq n$ are similar to the respective cases as in theorem 6
When $n \equiv 0 \pmod{6}$
For $i, 1 \leq i \leq n$,$f(u_1) = 1$
$f(u_i) = 3, \text{if } i \equiv 2, 5 \pmod{6}$
\(f(u_i) = 2, \) if \(i \equiv 3, 4 \pmod{6} \)
\(f(u_i) = 1, \) if \(i \equiv 0, 1 \pmod{6} \)
Labeling of the vertex \(u \) is given below.
When \(n \equiv 0, 1, 3, 5 \pmod{6}, f(u) = 3 \)
When \(n \equiv 2, 4 \pmod{6}, f(u) = 2. \)
Table 2 gives the quotient-3 cordial graph for \(Y \)-tree for \(n > 3 \)

Table 2:

<table>
<thead>
<tr>
<th>Nature of (n)</th>
<th>(v_f(1))</th>
<th>(v_f(2))</th>
<th>(v_f(3))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n \equiv 0, 3 \pmod{6})</td>
<td>(\frac{n}{3})</td>
<td>(\frac{n}{3})</td>
<td>(\frac{n}{3} + 1)</td>
</tr>
<tr>
<td>(n \equiv 1 \pmod{6})</td>
<td>(\frac{n+2}{3})</td>
<td>(\frac{n+2}{3} - 1)</td>
<td>(\frac{n+2}{3})</td>
</tr>
<tr>
<td>(n \equiv 2, 5 \pmod{6})</td>
<td>(\frac{n+1}{3})</td>
<td>(\frac{n+1}{3} - 1)</td>
<td>(\frac{n+1}{3})</td>
</tr>
<tr>
<td>(n \equiv 4 \pmod{6})</td>
<td>(\frac{n-1}{3} + 1)</td>
<td>(\frac{n-1}{3} + 1)</td>
<td>(\frac{n-1}{3})</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nature of (n)</th>
<th>(e_f(0))</th>
<th>(e_f(1))</th>
<th>(e_f(2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n \equiv 0, 3 \pmod{6})</td>
<td>(\frac{n}{3})</td>
<td>(\frac{n}{3})</td>
<td>(\frac{n}{3})</td>
</tr>
<tr>
<td>(n \equiv 1 \pmod{6})</td>
<td>(\frac{n+2}{3} - 1)</td>
<td>(\frac{n+2}{3})</td>
<td>(\frac{n+2}{3} - 1)</td>
</tr>
<tr>
<td>(n \equiv 2 \pmod{6})</td>
<td>(\frac{n+1}{3})</td>
<td>(\frac{n+1}{3} - 1)</td>
<td>(\frac{n+1}{3})</td>
</tr>
<tr>
<td>(n \equiv 4 \pmod{6})</td>
<td>(\frac{n-1}{3})</td>
<td>(\frac{n-1}{3})</td>
<td>(\frac{n-1}{3} + 1)</td>
</tr>
<tr>
<td>(n \equiv 5 \pmod{6})</td>
<td>(\frac{n-1}{3} - 1)</td>
<td>(\frac{n-1}{3})</td>
<td>(\frac{n-1}{3})</td>
</tr>
</tbody>
</table>

Theorem 8. The graph \((P_n; S_2) \) is quotient-3 cordial.

Proof. Let \(V(G) = \{u_i, v_i, w_{ij} : 1 \leq i \leq n, 1 \leq j \leq 2\} \)
\(E(G) = \{[u_iu_{i+1} : 1 \leq i \leq n - 1] \cup [u_iv_i : 1 \leq i \leq n] \cup [v_iw_{ij} : 1 \leq i \leq n, 1 \leq j \leq 2] \} \)
Here \(|V(G)| = 4n, |E(G)| = 4n - 1. \)
Define \(f : V(G) \to Z_4 - \{0\} \) by
\(f(u_i) = 2, 1 \leq i \leq n \)
\(f(v_i) = 1, 1 \leq i \leq n \)
Labeling of \(w_{ij}, 1 \leq i \leq n, 1 \leq j \leq 2 \) is given below.
Case (i): When \(n \equiv 0 \pmod{3} \)
Without loss of generality, first set of \(\left(\frac{n}{3} \right) \) vertices by the label 1,
next set of \(\left(\frac{2n}{3} \right) \) vertices by the label 2 and the remaining set of \(\left(\frac{4n}{3} \right) \) vertices by the label 3.
Case (ii): When \(n \equiv 1 \pmod{3} \)
Without loss of generality, first set of \(\left(\frac{n+2}{3} \right) \) vertices by the label 1, next set of \(\left(\frac{n-1}{3} \right) \) vertices by the label 2 and the remaining set of \(\left(\frac{4n-1}{3} \right) \) vertices by the label 3.

Case (iii): When \(n \equiv 2 \pmod{3} \)

Without loss of generality, first set of \(\left(\frac{n+1}{3} \right) \) vertices by the label 1, next set of \(\left(\frac{n-2}{3} \right) \) vertices by the label 2 and the remaining set of \(\left(\frac{4n+1}{3} \right) \) vertices by the label 3.

The following table 3 gives that the graph \((P_n; S_2) \) is quotient-3 cordial.

<table>
<thead>
<tr>
<th>Nature of (n)</th>
<th>(v_f(1))</th>
<th>(v_f(2))</th>
<th>(v_f(3))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n \equiv 0 \pmod{3})</td>
<td>(\frac{4n}{3})</td>
<td>(\frac{4n}{3})</td>
<td>(\frac{4n}{3})</td>
</tr>
<tr>
<td>(n \equiv 1 \pmod{3})</td>
<td>(\frac{4n-1}{3} + 1)</td>
<td>(\frac{4n-1}{3})</td>
<td>(\frac{4n-1}{3})</td>
</tr>
<tr>
<td>(n \equiv 2 \pmod{3})</td>
<td>(\frac{4n+1}{3})</td>
<td>(\frac{4n+1}{3} - 1)</td>
<td>(\frac{4n+1}{3} - 1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nature of (n)</th>
<th>(e_f(0))</th>
<th>(e_f(1))</th>
<th>(e_f(2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n \equiv 0 \pmod{3})</td>
<td>(\frac{4n}{3})</td>
<td>(\frac{4n}{3} - 1)</td>
<td>(\frac{4n}{3})</td>
</tr>
<tr>
<td>(n \equiv 1 \pmod{3})</td>
<td>(\frac{4n-1}{3})</td>
<td>(\frac{4n-1}{3})</td>
<td>(\frac{4n-1}{3})</td>
</tr>
<tr>
<td>(n \equiv 2 \pmod{3})</td>
<td>(\frac{4n+1}{3})</td>
<td>(\frac{4n+1}{3} - 1)</td>
<td>(\frac{4n+1}{3} - 1)</td>
</tr>
</tbody>
</table>

Theorem 9. The graph \((P_n; C_3) \) is quotient-3 cordial.

Proof. Let \(V(G) = \{u_i, v_i, w_{ij} : 1 \leq i \leq n, 1 \leq j \leq 2\} \)
\(E(G) = \{[(u_iu_{i+1}) : 1 \leq i \leq n-1] \cup [(u_iv_i) : 1 \leq i \leq n] \cup [(v_iw_{ij}) : 1 \leq i \leq n, 1 \leq j \leq 2] \cup [(w_{ij}w_{ij+1}) : 1 \leq i \leq n, j = 1]\} \)

Here \(|V(G)| = 4n, |E(G)| = 5n - 1 \)

Define \(f : V(G) \to \mathbb{Z}_4 - \{0\} \)

Case (i): When \(n \equiv 0 \pmod{3} \)

- \(f(u_i) = 2, 1 \leq i \leq n \)
- \(f(v_i) = 1, 1 \leq i \leq n \)
- \(f(w_{ij}) = 1, 1 \leq i \leq \frac{n}{3}, j = 1 \)
- \(f(w_{ij}) = 3, 1 \leq i \leq \frac{n}{3}, j = 2 \)
- \(f(w_{ij}) = 3, \frac{n}{3} + 1 \leq i \leq \frac{2n}{3}, 1 \leq j \leq 2 \)
- \(f(w_{ij}) = 3, \frac{2n}{3} + 1 \leq i \leq n, j = 1 \)
- \(f(w_{ij}) = 2, \frac{2n}{3} + 1 \leq i \leq n, j = 2 \)

\(\square \)
Case (ii): When \(n \equiv 1 \pmod{3} \)

\[
\begin{align*}
f(u_i) &= 2, \ 1 \leq i \leq n \\
f(v_i) &= 1, \ 1 \leq i \leq n \\
f(w_{ij}) &= 1, \ 1 \leq i \leq \frac{n-1}{3}, \ j = 1 \\
f(w_{ij}) &= 3, \ 1 \leq i \leq \frac{n-1}{3}, \ j = 2 \\
f(w_{ij}) &= 3, \ \frac{n+2}{3} \leq i \leq \frac{2n+1}{3}, \ 1 \leq j \leq 2 \\
f(w_{ij}) &= 3, \ \frac{2n+4}{3} \leq i \leq n, \ j = 1 \\
f(w_{ij}) &= 2, \ \frac{2n+4}{3} \leq i \leq n, \ j = 2
\end{align*}
\]

Case (iii): When \(n \equiv 2 \pmod{3} \)

\[
\begin{align*}
f(u_i) &= 2, \ 1 \leq i \leq n \\
f(v_i) &= 1, \ 1 \leq i \leq n-1 \\
f(v_i) &= 2, \ i = n \\
f(w_{ij}) &= 3, \ 1 \leq i \leq \frac{n+1}{3}, \ j = 1 \\
f(w_{ij}) &= 3, \ 2 \leq i \leq \frac{n+1}{3}, \ j = 2 \\
f(w_{ij}) &= 3, \ \frac{n+4}{3} \leq i \leq \frac{2n-1}{3}, \ 1 \leq j \leq 2 \\
f(w_{ij}) &= 3, \ \frac{2n+2}{3} \leq i \leq n-1, \ j = 1 \\
f(w_{ij}) &= 2, \ \frac{2n+2}{3} \leq i \leq n-1, \ j = 2
\end{align*}
\]

The following table 4 gives the quotient-3 cordial for \((P_n; C_3)\):

<table>
<thead>
<tr>
<th>Nature of (n)</th>
<th>(v_f(1))</th>
<th>(v_f(2))</th>
<th>(v_f(3))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n \equiv 0 \pmod{3})</td>
<td>(\frac{4n}{3})</td>
<td>(\frac{4n}{3})</td>
<td>(\frac{4n}{3})</td>
</tr>
<tr>
<td>(n \equiv 1 \pmod{3})</td>
<td>(\frac{4n-1}{3})</td>
<td>(\frac{4n-1}{3})</td>
<td>(\frac{4n-1}{3} + 1)</td>
</tr>
<tr>
<td>(n \equiv 2 \pmod{3})</td>
<td>(\frac{4n+1}{3})</td>
<td>(\frac{4n+1}{3})</td>
<td>(\frac{4n+1}{3} - 1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nature of (n)</th>
<th>(e_f(0))</th>
<th>(e_f(1))</th>
<th>(e_f(2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n \equiv 0 \pmod{3})</td>
<td>(\frac{3n}{3})</td>
<td>(\frac{3n}{3} - 1)</td>
<td>(\frac{3n}{3})</td>
</tr>
<tr>
<td>(n \equiv 1 \pmod{3})</td>
<td>(\frac{3n+1}{3})</td>
<td>(\frac{3n+1}{3} - 1)</td>
<td>(\frac{3n+1}{3} - 1)</td>
</tr>
<tr>
<td>(n \equiv 2 \pmod{3})</td>
<td>(\frac{3n-1}{3})</td>
<td>(\frac{3n-1}{3})</td>
<td>(\frac{3n-1}{3})</td>
</tr>
</tbody>
</table>
Illustration 10. A quotient-3 cordial labeling of \((P_7; C_3)\) is given in figure 2

\[\begin{array}{cccccccc}
1 & 2 & 1 & 2 & 1 & 2 & 1 & 2 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\end{array} \]

Figure 2:

4 Conclusion

It is very interesting to find out graphs or graph families which are quotient-3 cordial. In this paper, a quotient-3 cordial for some path related graphs has been found. The quotient-3 cordial labeling of some more graphs and graph families shall be explored further in future.

5 Acknowledgements

Register our heartful thanks to the referees who offered valuable suggestions and feedback.

References

