International Journal of Pure and Applied Mathematics

Volume 106 No. 8 2016, 13-20

 $ISSN:\ 1311\text{-}8080\ (printed\ version);\ ISSN:\ 1314\text{-}3395\ (on\text{-}line\ version)$

url: http://www.ijpam.eu **doi:** 10.12732/ijpam.v106i8.3

SOME MORE PROPERTIES OF INTUITIONISTIC β -OPEN SETS

A. Singaravelan¹, Gnanambal Ilango²

1,2Department of Mathematics
Government Arts College
Coimbatore - 641018, Tamil Nadu, INDIA

Abstract: Intuitionistic β -open sets was studied recently by A.Singaravelan. In this paper some more properties of Intuitionistic β -open set (I β -open sets) and properties of intuitionistic β -closure (I β -cl) and intuitionistic β -interior (I β -int) are discussed.

AMS Subject Classification: 54A99

Key Words: $I\beta$ -open sets, $I\beta$ -closed sets, $I\beta$ -closure, $I\beta$ -interior

1. Introduction

In 1986, Atanassov [4] introduced the concept of Intuitionistic fuzzy sets as a generalization of fuzzy sets. Later in 1996, Coker [5] introduced the concept of Intuitionistic set and Intuitionistic points. This is a discrete form of intuitionistic fuzzy sets where all the sets are crisp set. In 2000, Coker [7] also introduced the concept of intuitionistic topological space and investigated basic properties of continuous functions and compactness. N. Levine [9] introduced semi open sets and semi continuity in topological space and M.E. Abd EI. Monsef et.al [1] introduced β -open sets and β -continuous mapping and discussed some basic properties. D.Andrijevic [3] introduced and discussed some more properties of semi pre open set in topological space. Gnanambal Ilango and Selvanayaki [8], introduced generalized pre regular closed sets in intuitionistic topological spaces and Singaravelan [11] introduced intuitionistic β -open set in intuitionistic topo-

Received: February 15, 2016 © 2016 Academic Publications, Ltd. Published: March 3, 2016 url: www.acadpubl.eu

logical space. In this paper some more properties of intutionistic β -open sets and some more properties of intuitionistic β -interior and intuitionistic β -closure are discussed.

2. Preliminaries

Definition 1. [5] Let X is a non empty set. An intuitionistic set (IS for short) A is an object having the form $A = \langle X, A_1, A_2 \rangle$, where A_1 and A_2 are subsets of X satisfying $A_1 \cap A_2 = \phi_{\sim}$. The set A_1 is called the set of members of A, while A_2 is called the set of non-members of A.

Definition 2. [5] Let X be a non empty set and let A, B are intuitionistic sets of the form $A = \langle X, A_1, A_2 \rangle, B = \langle X, B_1, B_2 \rangle$ respectively. Then:

(a)
$$A \subseteq B$$
 iff $A_1 \subseteq B_1$ and $B_2 \subseteq A_2$;

(b)
$$A = B$$
 iff $A \subseteq B$ and $B \subseteq A$;

(c)
$$A^c = \langle X, A_2, A_1 \rangle$$
, (d) $||A| = \langle X, A_1, (A_1)^c \rangle$;

(e)
$$A - B = A \cap B^C$$
;

(f)
$$\phi_{\sim} = \langle X, \phi_{\sim}, X_{\sim} \rangle, X_{\sim} = \langle X, X_{\sim}, \phi_{\sim} \rangle;$$

(g)
$$A \cup B = \langle X, A_1 \cup B_1, A_2 \cap B_2 \rangle$$
;

(h)
$$A \cap B = \langle X, A_1 \cap B_1, A_2 \cup B_2 \rangle$$
;

Furthermore, let $\{A_{\alpha} : \alpha \in J\}$ be an arbitrary family of intuitionistic sets in X, where $A_{\alpha} = \langle X, A_{\alpha}^{(1)}, A_{\alpha}^{(2)} \rangle$ Then:

(i)
$$\cap A_{\alpha} = \langle X, \cap A_{\alpha}^{(1)}, \cup A_{\alpha}^{(2)} \rangle;$$

(i)
$$\cup A_{\alpha} = \langle X, \cup A_{\alpha}^{(1)}, \cap A_{\alpha}^{(2)} \rangle$$
;

$$(\mathbf{k})\langle\rangle\,A=< X, A_2^C, A_2>.$$

Definition 3. [6] An intuitionistic topology (for short IT) on a non empty set X is a family of IS's in X satisfying the following axioms:

- (i) $\phi_{\sim}, X_{\sim};$
- (ii) $G_1 \cap G_2$ for any $G_1, G_2 \in \tau$.
- (iii) $\cup G_{\alpha}$ for any arbitrary family $\{G_{\alpha} : \alpha \in J\} \subseteq \tau$ where (X, τ) is called an intuitionistic topological space (ITS(X)) and any intuitionistic set in is called an intuitionistic open set (IOS) in X. The complement A^c of an IOS A is called an intuitionistic closed set (ICS) in X.

Definition 4. [7] Let (X, τ) be an intuitionistic topological space (ITS(X)) and $A = \langle X, A_1, A_2 \rangle$ be an IS in X. Then the interior and closure of A are defined by

Icl
$$(A) = \bigcap \{K : K \text{ is an ICS in } X \text{ and } A \subseteq K\};$$

$$\operatorname{Iint}(A) = \bigcup \{G : G \text{ is an IOS in } X \text{ and } G \subseteq A\} :$$

It can be shown that Icl(A) is an ICS and Iint(A) is an IOS in X and A is an ICS in X iff Icl(A) = A and is an IOS in X iff Iint(A) = A.

Definition 5. [12] Let (X, τ) be an ITS(X). An intuitionistic set A of X is said to be (i) intuitionistic semiopen if $A \subseteq Icl(Iint(A))$.;

- (ii) intuitionistic preopen if $A \subseteq \text{Iint}(\text{Icl}(A))$.;
- (iii) intuitionistic regular open if A = Iint(Icl(A)) .;
- (iv) intuitionistic α -open if $A \subseteq \text{Iint}(\text{Icl}(\text{Iint}(A)))$.;
- (V) intuitionistic semi-preopen if $A \subseteq Icl(Iint(Icl(A)))$.;

The family of all intuitionistic, semi open pre open, intuitionistic regular open and intuitionistic α -open sets of (X, τ) are denoted by ISOS, IPOS, IROS and I α OS respectively.

Definition 6. [5] Let A, B, C and A_i be IS's in X $(i \in J)$. Then;

- (a) $A \subseteq B$ and $B \subseteq C \Rightarrow A \subseteq C$;
- (b) $A_i \subseteq B$ for each $i \in J \Rightarrow UA_i \subseteq B$;
- (c) $B \subseteq A_i$ for each $i \in J \Rightarrow B \subseteq \cap A_i$;
- (d) $(UA_i)^C = \cap A_i^C$, (e) $(\cap A_i)^C = \cup A_i^C$;
- $(f)A \subseteq B \Leftrightarrow B^C \subseteq A^C;$

$$(g)(A^C)^C = A$$
, $(h)(\phi_{\sim})^C = X_{\sim}$ and $(i)(X_{\sim})^C = \phi_{\sim}$.

Definition 7. [11] A subset A of an intuitionistic topological space X is intuitionistic β -open set, if there exists a intuitionistic preopen set U in X, such that $U \subseteq A \subseteq Icl(U)$. The family of all intuitionistic β -open sets in X will be denoted by $I\beta OS(X)$.

3. Some More Properties of Intuitionistic β -Open Sets

Theorem 8. Let $B_i = \langle X, B_i^1, B_i^2 \rangle$ for every $i \in J$ be family of intuitionistic β -open sets in a ITS X. Then $U_{i \in J}(B_i)$ is intuitionistic β -open in ITS(X).

Proof. Let $B_i = \langle X, B_i^1, B_i^2 \rangle$ be intuitionistic β -open sets for every $i \in J$.;

$$\Rightarrow B_i^C = \langle X, B_i^2, B_i^1 \rangle$$
 is $I\beta$ -closed for every $i \in J$;

$$\Rightarrow \cap B_i^C = \langle X, \cap B_i^2, \cup B_i^1 \rangle$$
 is $I\beta$ -closed for every $i \in J$;

$$\Rightarrow \cap B_i^C = (\cup B_i)^C$$
 is $I\beta$ -closed set for every $i \in J$;

by definition (6) $(A_i^C = (\cup A_i)^C)$;

$$\Rightarrow (\cup B_i)^C = (\langle X, \cup B_i^1, \cap B_i^2 \rangle)^C$$
.;

Hence $\cup B_i = \langle X, \cup B_i^1, \cap B_i^2 \rangle$ is intuitionistic β -open set in the ITS(X).

Corollary 9. Let $A_i = \langle X, A_i^1, A_i^2 \rangle$ for every $i \in J$ be family of intuitionistic β -closed sets in a ITS X. Then $\cap_{i \in J}(A_i)$ is intuitionistic β -closed in ITS X.

Theorem 10. For any intuitionistic open set A in a ITS X and every $B \subseteq X$, $Icl(B) \cap A \subseteq Icl(A \cap B)$.

Corollary 11. For any intuitionistic closed set A in intuitionistic topological space X (for short ITS(X)) and every $B \subseteq X$, we have $Iint(B \cup A) \subseteq Iint(B) \cup A$.

Theorem 12. Let $A = \langle X, A_1, A_2 \rangle$ be a subset of ITS X. Then the following conditions are equivalent.;

- (a) A is intutionistic semi open set.;
- (b) $A \subseteq Icl(Iint(A))$ and (c) Icl(A) = Icl(Iint(A)).

Corollary 13. Let $A = \langle X, A_1, A_2 \rangle$ be a subset of ITS X. Then the following conditions are equivalent.;

- (a) A is intuitionistic semi closed set;
- (b) $Iint(Icl(A)) \subseteq A$ and (c) Iint(Icl(A)) = Iint(A).

Corollary 14. Let $A = \langle X, A_1, A_2 \rangle$ be subset of ITS X, then the following results hold.;

(i)
$$Iscl(A) = A \cup Iint(Icl(A))$$
 and (ii) $Isint(A) = A \cap Icl(Iint(A))$;

(iii)
$$Ipcl(A) = A \cup Icl(Iint(A))$$
 and (iv) $Ipint(A) = A \cap Iint(Icl(A))$.

Theorem 15. If A is intuitionistic α -closed and B is intuitionistic β -closed then $A \cup B$ is intuitionistic β -closed.

Proof. Let $A = \langle X, A_1, A_2 \rangle$ is a intuitionistic α -closed and $B = \langle X, B_1, B_2 \rangle$ is intuitionistic β -closed.;

```
\Rightarrow Icl(Iint(Icl(A))) \subseteq A \text{ and } Iint(Icl(Iint(B))) \subseteq B;
```

$$\Rightarrow Icl(Iint(Icl(A))) \cup Iint(Icl(Iint(B))) \subseteq (AUB);$$

Let D = Icl(Iint(Icl(A))) and E = Icl(Iint(B));

$$\Rightarrow DUIint(E) \subseteq (AUB);$$

$$\Rightarrow Iint(DUE) \subseteq DUIint(E) \subseteq (AUB)$$
 (by corollary 10);

$$\Rightarrow Iint(DUE) \subseteq (AUB);$$

$$\Rightarrow Iint((Icl(Iint(Icl(A)))UIcl(Iint(B)) \subseteq (AUB);$$

$$\Rightarrow Iint((Icl(Iint(A)))UIcl(Iint(B))) \subseteq (AUB);$$

$$\Rightarrow Iint(Icl(Iint(AUB))) \subseteq (AUB);$$

Therefore $A \cup B$ is intuitionistic β -closed set.

Corollary 16. If A is intuitionistic α -open and B is intuitionistic β -open, then $A \cap B$ is intuitionistic β -open.

Theorem 17. If A is an intuitionistic closed and B is an intuitionistic β -closed, then $A \cup B$ is intuitionistic β -closed set.

Proof. Let $A = \langle X, A_1, A_2 \rangle$ be an intuitionistic closed set, Then A= Icl(A) which implies Icl(A) = Icl(A) = Icl(Iint(A));

(by corollary 11) and let $B = \langle X, B1, B2 \rangle$ is an intuitonistic;

 β -closed, which implies $Iint(Icl(Iint(B))) \subseteq B$.;

$$\Rightarrow AUIint(Icl(Iint(B))) \subseteq (AUB);$$

$$\Rightarrow AUIint(Icl(Iint(B))) \subseteq (AUB);$$

Let
$$D = Icl(Iint(B))$$
, then $\Rightarrow AUIint(D) \subseteq (AUB)$;

$$\Rightarrow Iint(DUA)AUIint(D) \subseteq (AUB)$$
(by corollary 10);

$$\Rightarrow Iint(DUA) \subseteq (AUB) \Rightarrow Iint(Icl(Iint(B))UA) \subseteq (AUB);$$

```
\Rightarrow Iint(Icl(Iint(B))UIcl(A) = Icl(Iint(A))) \subseteq (AUB);
\Rightarrow Iint(Icl(Iint(B)UIcl(Iint(A))) \subseteq (AUB);
\Rightarrow Iint(Icl(Iint(AUB))) \subseteq (A \cup B);
Therefore A \cup B is an intuitionistic \beta-closed set.
```

Corollary 18. If A is an intuitionistic open and B is an intuitionistic β -open, then $A \cap B$ is $I\beta$ -open set.

4. Properties of Intuitionistic β -Closure and Intuitionistic β -Interior

Definition 19. Let (X, τ) be an intuitionistic topological space and let $A = \langle X, A_1, A_2 \rangle$ be an intuitionistic set of X. Then $I\beta - cl(A) = \bigcap \{F : F \text{ is intuitionistic } \beta - closed \text{ in } X \text{ and } A \subseteq F\}.$

Definition 20. Let (X, τ) be an intuitionistic topological space and let $A = \langle X, A_1, A_2 \rangle$ be an intuitionistic set of X. Then $I\beta - int(A) = \bigcup \{F : F \text{ is intuitionistic } \beta - open \text{ in } X \text{ and } F \subseteq A\}.$

Theorem 21. If $A = \langle X, A_1, A_2 \rangle$ is a subset of ITS X, then $Isint(Iscl(A)) = Iscl(A) \cap Icl(Iint(Icl(A)))$.

```
Proof. By corollary [13], Isint (Iscl(A)) = Iscl(A) ∩ Icl(Iint(Iscl(A)));

= Iscl(A) ∩ Icl(Iint(A ∪ Iint(Icl(A))));

= Iscl(A) ∩ Icl(Iint(A) ∪ Iint(Icl(A)));

= Iscl(A) ∩ Icl(Iint(A ∪ Icl(A)));

= Iscl(A) ∩ Icl(Iint(Icl(A)));

Iscl(A) ∩ Icl(Iint(Icl(A))) ⊆ Isint (Iscl(A)) ⇒ (1);

Isint(Iscl(A)) = Iscl(A) capIcl(Iint(Icl(A)));

⇒ Isint(Iscl(A)) ⊆ Iscl(A) ∩ Icl(Iint(Icl(A))) ⇒ (2);

From (1) and (2) we have;

Isint(Iscl(A)) = Iscl(A) ∩ Icl(Iint(Icl(A))).
```

Corollary 22. If $A = \langle X, A_1, A_2 \rangle$ is a subset of ITS X, then $Iscl(Isint(A)) = Isint(A) \cup Iint(Icl(Iint(A)))$.

Corollary 23. Let $A = \langle X, A_1, A_2 \rangle$ be an intuitionistic set of ITS(X), then $I\beta$ -int $(I\beta$ -cl(A)) = $I\beta$ -cl $(I\beta$ -int(A)).

Theorem 24. If $A = \langle X, A_1, A_2 \rangle$ is a subset of intuitionistic topological space X, then:

$$Iscl(Isint(A)) \subseteq I\beta - int(I\beta - cl(A)) \subseteq Isint(Iscl(A)).$$

Proof. Let $A=< X, A_1, A_2>$ be a subset of intuitionistic topological space X, then:

```
\operatorname{Iscl}(\operatorname{Isint}(A)) = \operatorname{Isint}(A) \cup \operatorname{Iint}(\operatorname{Icl}(\operatorname{Iint}(A))) \text{ [by corollary 21]};
```

- $= (A \cap Icl(Iint(A))) \cup (Iint(Icl(Iint(A))))$ [by corollary 13];
- $= (A \cup Iint(Icl(Iint(A)))) \cap Icl(Iint(A));$

$$(A \cup Iint(Icl(Iint(A)))) \cap Icl(Iint(Icl(A))) = I\beta - int(I\beta - cl(A));$$

 $Iscl(Isint(A)) \subseteq I\beta - int(I\beta - cl(A)) \subseteq (A \cup Iint(Icl(A))) \cap Icl(Iint(Icl(A))) = Isint(Iscl(A));$

Thus
$$\operatorname{Iscl}(\operatorname{Isint}(A)) \subseteq \operatorname{I}\beta\text{-int}(\operatorname{I}\beta\text{-cl}(A)) \subseteq \operatorname{Isint}(\operatorname{Iscl}(A)).$$

References

- M.E.Abd EI-Monsef, S.N. EI-Deeb and R.A.Mahmoud, β-open sets and β-continuous mappings, Bull.Fac.Sci.Assiut Univ, 12(1) (1983), 77-90.
- [2] D.Andrijevic, Some properties of the topology of α -sets, Mat. Vesnik, 36(1984), 1-10.
- [3] D.Andrijevic, Semi-preopen sets, Mat. Vesnik, 38(1986), 24-32.
- [4] K.T Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20, No.1 (1986), 87-66.
- [5] D.Coker, A note on intuitionistic sets and intuitionistic points, Turkish J. Math., 20, No.3 (1996), 343-351.
- [6] D.Coker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems, 88-1 (1997) 81-89.
- [7] D.Coker, An introduction to intuitionistic topological spaces, Busefal, 81(2000), 51-56.
- [8] Gnanambal Ilango and S.Selvanayaki, Genneralized pre regular closed sets in intuitionistic topological spaces, *IJMA*, 5(4), 2014, 30-36.
- [9] Norman Levin , Semi Open sets and Semi continuity in topological space, Amer. Math Monthly, 68(1961), 36-41.
- [10] O.Njastad, On some classes of nearly open sets, Pacific J.Math, 15(1965), 961-970.
- [11] A.Singaravelan, On intuitionistic β -open set in intuitionistic topological space, *Mathematical Sciences International Research Journal*, Vol no 5(2016) (Communicated).
- [12] Younis J.Yaseen and Asmaa G.Raouf, On generalization closed set and generalized continuity on intuitionistic topological spaces, J. of Al-anbar University of Pure Science, vol.3: no.1:(2009).