Mechanistic studies on degradation in High-temperature sliding wear behavior of Al₂O₃ - 60TiO₂ on Hastelloy X superalloy at 500°C

KG.Thirugnanasambantham¹, Shaik Saidulu¹ Yesu Ratnam Maddu ¹ Nagendra Akula ¹
¹ Department of Mechanical Engineering, St. Peter’s Engineering College, Hyderabad, Telangana, India.
Corresponding Author: universalthiru@rediffmail.com

ABSTRACT

This technical paper deals with high temperature dry sliding wear behavior and its mechanism of Al₂O₃–60TiO₂ (A60T) coating on Hastelloy X alloy. The sliding wear behaviour of the A60T coating on Hastelloy X alloy was investigated using a pin on disc equipment at 500°C with varying parameters like normal load and sliding velocity. SEM features of worn samples reveal that ploughing, deep grooving and splat exfoliation are the dominant wear mechanisms of A60T coating at 10 N, while at 30 N they are: crack extension, crack deflection, crack bridging and splat exfoliation.

Keywords: Superalloy, Plasma spray, friction, sliding wear mechanism, A60T, SEM, 3D Surface Topography

1. Introduction

Wear can be defined as the interaction between surfaces resulting in the removal of material. Wear can act in a number of modes, that include abrasive, adhesive and erosive wear which categorize the field of tribology [1]. In particular, wear at elevated temperature is a serious problem in a large number of industrial applications such as power generation, high temperature bearing, gas turbine seals, nozzle, turbine blades in gas turbines, moving assemblies for hypersonic aircraft and missiles [2-5]. Wear at elevated temperatures brings further complications in engineering materials, due to loss of mechanical strength of materials and alterations in the surface conditions leading to changes in adhesion between the surfaces caused by the joint action of temperature and tribological parameters [6]. It degrades the performance and lifetime of mechanical components and results in economic loss. Thus mechanical components operating in aerospace often require strength to withstand the synergetic attack combining wear and high temperature.
In recent times, gas turbine technology for power generation and for aeroengine applications places an increasing demand on the use of Ni based superalloys [7-10]. Although the Ni base superalloys possess adequate mechanical strength and creep resistance at the high operating temperatures, they often lack resistance to the wear environments. In such environments, alumina based ceramic protective coatings are widely employed to improve the wear resistance of Ni based superalloys. Alumina based ceramic coatings are used in a wide range of applications including power generation equipment, aircraft engines, land based and marine turbines and ships [11]. Alumina based ceramic coatings exhibit high hardness, high thermal resistance, friction and wear resistance at elevated temperatures [12-14]. Although alumina based ceramic coatings exhibit high hardness, its main drawback is its brittleness. The addition of titanium oxide to alumina leads to a balanced properties maintaining sufficient hardness and substantially increasing the coating toughness. Titanium oxide has a lower melting point and plays a role of binding alumina grains to achieve coatings with a higher density [15]. The frictional bond between the intersplats is favoured by the alumina–titania glassy phase with a lower melting point that results in the good intersplat cohesion. Thus, alumina–titania coatings exhibit equilibrium of properties maintaining enough hardness and coating toughness at elevated temperatures.

The wear mechanisms of the brittle material and hard coating is characterized by plastic deformation, intergranular cracking, Hertzian cone crack, median/radial crack system [16-24] reported the details on wear behaviors of the ceramic coating under dry sliding, revealing that the modes of deformation and fracture of ceramic coatings strongly depend on the normal load. Regarding mechanisms with which sliding wear phenomenon happens, virtually no report is available in literature on plasma sprayed Al$_2$O$_3$–60 wt.%TiO$_2$(A60T). Thus main objective of this work is to study the friction, wear mechanisms of plasma sprayed Al$_2$O$_3$–60 wt.%TiO$_2$ (A60T) coating by varying the normal load, under dry sliding condition using a pin on disc universal tribometer at 500°C.

In addition to the SEM, the characterization of 3D surface topography is essentially important in the field of tribology that provides useful information for analysis of wear scar surfaces [25-27]. In the present investigation, high resolution Optical profilometer universal tribometer has been used for scanning the surface of worn samples of A60T to obtain 3D surface topography images. The 3D surface topographic images, provides a comprehensive picture of worn samples, in predicting the depth of worn surface and complete track of the wear scar.

2. Materials and methodology

In the present study, Hastelloy X superalloy is chosen as the substrate and its nominal chemical composition (in wt %) are summarized in Table 1. Hardness of Hastelloy X is 34 HRC. Samples with dimension of 8 mm x 5 mm sliced using wire electrical discharge machining (wire–cut) were coated with Al$_2$O$_3$– 60TiO$_2$ using
atmospheric plasma spray process with the coating parameters of industrial standards as mentioned in Tables 2 and 3. Dry Sliding wear tests were carried out at 500°C as per ASTM G76 standard on specimens with 260–300 mm thick Al₂O₃–60TiO₂ coating, using pin on disc tribometer, to simulate sliding wear of the coatings. The temperature was elevated by setting the furnace temperature in the tribometer and it was measured by attaching the temperature sensor to the specimen holder. The testing conditions are summarized in Table 4.

Optical microscope (Leica, D2700M, GmbH) and Scanning electronic microscope (TESCAN – VEGA 3, Czech Republic) were used to observe the surface morphology of the worn samples to investigate the sliding wear mechanisms. Optical profilometer is one of the main components in Universal Tribometer, which acts as surface profilometry tool to capture and analyze the surface topographical images of worn surface.

3. Results and discussion

Fig. 1, 2 and 3 illustrate the variations of the coefficient of friction of the samples with increasing distance at normal loads of 10, 20 and 30 N. The coefficient of friction (COF) was recorded throughout each pin-on-disk test by utilizing the tangential and normal load sensors of the tribometer. When two contacting surfaces slide against each other, a frictional force is generated opposite to the direction of sliding. During sliding, the friction force is considered to be exerted in a direction perpendicular to the normal load. The ratio of these forces is equal to the coefficient of friction.

Fig. 1, 2 and 3 shows that the friction coefficient of the A60T specimens under dry sliding condition, increases with increasing normal load. As the applied load increases, the number of asperities interactions between the rubbing surfaces increases, resulting in increased friction coefficient. The gradual increase of the friction coefficient can be associated to the real contact area between the rubbing surfaces. At the beginning of sliding the asperities of the surface limit the sliding speed. Meanwhile the friction leads to removal of some of the asperities. This removal of the asperities would change the applied stress on the worn surface, which could change the mechanism from two-body to three-body abrasion involved in the wear process.
Fig. 1. Variation of coefficient of friction with distance at 1.5 m/s

Fig. 2. Variation of coefficient of friction with distance at 2 m/s
Fig. 3. Variation of coefficient of friction with distance at 2.5 m/s

Fig. 4. SEM images showing sequence of sliding damage of coating at 10 N, 2 m/s.

a) Ploughing b) deep grooving and splat exfoliation c) entrapment of wear particles in crater d) damaged crater
Fig. 5. SEM images showing sequence of sliding damage of A60T surface at 30N, 2 m/s.

a) crack extension, b) crack deflection c) crack bridging d) splat exfoliation
Fig. 6. Sem image of worn surface of A60T at 30N and V = 2 m/s.
a) visible of sublayer splats, b) sublayer splat exfoliation c) deep crater
Fig. 7. Sem image of worn surface of A60T at 30N and V = 2 m/s.
a) entrapment of wear particles in deep crater, b) severely damaged crater

Fig. 8a. 3D surface topography of the worn surface at 30N and V = 2m/s.

Fig. 8b. Topography of the crater depth of worn surface at 30N and V = 2m/s.

Fig. 8c. Wear Track Profile of worn surface at 30N and V = 2m/s.
Fig. 9a. 3D surface topography of the worn surface at 10 N and V = 2m/s.

Fig. 9b. Topography of the crater depth of worn surface at 10 N and V = 2m/s.

Fig. 9c. Wear Track Profile of worn surface at 10 N and V = 2m/s.

List of Tables

<table>
<thead>
<tr>
<th>Material</th>
<th>Ni</th>
<th>Fe</th>
<th>Cr</th>
<th>Mo</th>
<th>Co</th>
<th>Mn</th>
<th>C</th>
<th>w</th>
<th>Si</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hastelloy X</td>
<td>49.44</td>
<td>18.42</td>
<td>20.97</td>
<td>8.77</td>
<td>0.82</td>
<td>0.62</td>
<td>0.06</td>
<td>0.35</td>
<td>0.27</td>
</tr>
</tbody>
</table>
Table 1 Material chosen and their nominal chemical compositions (in wt %)

<table>
<thead>
<tr>
<th>Spraying condition</th>
<th>Parameters</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasma arc current</td>
<td>460 – 600</td>
<td>A</td>
</tr>
<tr>
<td>Arc voltage</td>
<td>60 – 70</td>
<td>V</td>
</tr>
<tr>
<td>Plasma gas (argon)</td>
<td>1.3 – 1.5</td>
<td>$10^{-3} \text{ m}^3 \text{ s}^{-1}$</td>
</tr>
<tr>
<td>Secondary gas (hydrogen)</td>
<td>0.3 – 0.4</td>
<td>$10^{-3} \text{ m}^3 \text{ s}^{-1}$</td>
</tr>
<tr>
<td>Powder feed rate</td>
<td>0.66 – 0.83</td>
<td>g s$^{-1}$</td>
</tr>
<tr>
<td>Torch to base distance</td>
<td>76 – 125</td>
<td>mm</td>
</tr>
</tbody>
</table>

Table 2 Parameters for atmospheric plasma spray coatings

<table>
<thead>
<tr>
<th>Chemical composition</th>
<th>Particle size</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al$_2$O$_3$–60%TiO$_2$</td>
<td>30 ± 5</td>
<td>METCO131VF</td>
</tr>
<tr>
<td>(A60T)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3 Details of powder used for coatings

<table>
<thead>
<tr>
<th>Specimen size (mm)</th>
<th>8 x 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin material</td>
<td>A60T</td>
</tr>
<tr>
<td>Disc material</td>
<td>Alumina</td>
</tr>
<tr>
<td>Sliding velocity (m/s)</td>
<td>1.5, 2, 2.5</td>
</tr>
<tr>
<td>Normal load (N)</td>
<td>10, 20, 30</td>
</tr>
<tr>
<td>Temperature</td>
<td>500°C</td>
</tr>
</tbody>
</table>

Table 4 Sliding Test Parameters

The wear mechanism transition causes sudden changes in the tangential (or friction) force resulting in the friction coefficients fluctuations in a wavy form. Fig. 1 and 2 shows the oscillations in the friction coefficient behavior of the A60T specimens, this should be attributed to the interactions between the surface asperities and the induced dynamics of the contacting bodies and entrapment of wear particles. Some wear particles may favour rolling processes, which lower the friction coefficient. Fig. 3 illustrates that the friction coefficient of the A60T specimens for all different loads that initially increased with increasing sliding distance until a peak value was reached, and then it gradually approached steady state. This is the so-called running-in stage. The initial running-in corresponds to the contact of the asperities between the rubbing surfaces.
A60T coatings exhibit balanced properties of hardness and toughness at elevated temperatures. These material properties suppress the junction growth at asperity contacts in friction and the real area of contact. Hence the friction coefficient of A60T coating does not exceed to a value above 1.0, as shown in Fig. 1, 2 and 3. It is well known that the lowest coefficient of friction results in higher wear resistance. Investigating the wear mechanisms is more important than the knowledge of actual wear rates from the design point of view [28]. Generally normal load plays a predominant role in determining the sliding wear mechanisms [29].

3.1 Wear mechanisms of A60T coated surface at 10 N
When two sliding surfaces come into contact, normal and tangential forces are transmitted through contacting asperities. Fig. 4a shows formation of ploughing on the surface of the coating due to tangential sliding action of asperities. Tangential sliding action of asperities causes local pressure between contacting asperities, as a result Hertzian contact stresses arise at the interface of contacting asperities, resulting in ploughing. The role of ploughing mechanism, is to reducing the energy of sliding asperity during the sliding action, therefore, much less kinetic energy is available for initiating and propagating the cracks along the grain boundary of A60T coating. Further repeated sliding action induces residual stresses in the coating. To attain the equilibrium configuration, residual stress inside the plastic zone is released in the form of lateral cracks along the sides of the grooves. At this stage, there will be transition of mechanism from ploughing to crack initiation and propagation along the splat boundary of the coating and finally resulting in splat exfoliation (Fig. 4b), as corroborated by the previous researchers [23, 30].

After splat exfoliation, the next sub layer becomes as a new sliding surface. This process is continued, resulting in crater. Attributing to the insufficient load carrying capacity due to continuous action sliding cycles, the removed splat is crushed into smaller hard particles and remain in the contact zone between pin and disc and promote wear damage in the coated surface.

Fig. 4c reveals the entrapment of hard particles in the crater, causes high abrasion stress which could change the wear mechanism from two-body to three-body abrasion. Wear transition of A60T coating, causes significant change in tribocontact surface topographical features such as peaks and valleys, as shown in Fig. 9a. Presence of third bodies remaining in the contact zone, leads to an increase of the applied stress on the worn surface, causing more localized fracture as shown in Fig. 4d.

3.2 Wear mechanisms of A60T coated surface at 30N
The lateral cracks are mainly responsible for sliding wear in ceramic based coatings. The magnitude of extension of lateral crack and propagation depends on the normal load. As the applied load increases, the number of asperities interactions between the rubbing surfaces increases, resulting in increased friction coefficient. At higher loads, the intensity of residual stress will increase due to the higher friction coefficient on the interface, under the action of normal and tangential load. Residual stresses within the plastic zone are released in the form of lateral cracks.
Lateral cracks are initiated from sites of pre-existing surface flaws and subsequently crack extend (Fig. 5a) under the normal and frictional stresses. Presence of TiO$_2$ in alumina plays a vital role in binding the alumina grains effectively to achieve good frictional bond between the intersplats, which provides shielding mechanisms to the crack tip through crack deflection, crack branching, and crack bridging. Crack extends with local deflections from its general crack path direction. Fig. 5b reveals that series of crack deflections and crack branching results in causing the R-curve behavior in A60T. The concept of R-curve behavior is fracture resistance increases with crack extension, as corroborated by the previous researchers [31-33].

R-curve behavior in A60T increases the fracture resistance, due to stress transfer or kinetic energy transfer behind the crack tip. This stress transfer occurs through crack extension, crack deflections and crack branching mechanisms, which reduces the intensity of crack tip for further propagation. Therefore R-curves behavior influences the energy consumption during crack propagation. Hence additional energy is required for the crack tip to propagate the crack. Further subsequent sliding action on surface, causes crack propagation along splat boundary, resulting in formation of crack bridging, shown in Fig. 5c. Crack bridging promotes the frictional bond between the intersplats, which resist the splat exfoliation. Therefore, additional energy is required to overcome the bridging friction and to separate the crack surfaces, which increases the fracture resistance of the coating [34]. Due to further sliding action, crack bridges get damaged and finally resulting in splat exfoliation, shown in Fig. 5d. Fig. 6a reveals subsurface splat due to the subsequent removal of material. On the worn surfaces of the coating, the existence of sublayer splat exfoliation (Fig. 6b) gives considerable evidence that fracture occurs along the sub splat boundary. Fig. 6c shows the deeper crater in the coated surface due to the excessive sublayer splat exfoliation material removal during the cyclic sliding action on worn surface.

Due to continuous action sliding cycles, the removed splat is broken into smaller hard particles and entrapped in the deeper crater. The entrapment of hard particles in crater (Fig. 7a), leads to an increase of the applied stress on the worn surface and induced the dynamics of the contacting bodies, which could change the mechanism from two-body to three-body abrasion involved in the wear process, resulting in sudden changes in the tangential (or friction) force which eventually causes the friction coefficients to fluctuate in a wavy form (Fig. 2) and also causes significant change in a tribocontact surface topographical features such as central depression, formation of well-defined peaks and valleys, as shown in Fig. 8a. Wear mechanism transition of A60T coating, increases the contact stresses at their interface, cause rapid grain chipping from the surface of the coated material and finally resulting in severe damage, as shown in Fig. 7b.

Generally, the magnitude of depth and size of crater are proportional to the normal load. The depth of wear scar are significantly larger at 30N (Fig. 8a-c) than 10N (Fig. 9a-c). This is mainly due to crack propagation and splat exfoliation during sliding action, causing more effective damage on the target surface.
4. Conclusion
Wear mechanisms of the A60T coating is greatly influenced by the normal load.

- At 10 N, the mechanism of sliding wear of of A60T coating on Hastelloy X occurs through Ploughing, crack initiation and propagation along the splat boundary and splat exfoliation.
- At 30 N, the sliding wear mechanism of A60T is found to be through crack extension, crack deflection, crack bridging, splat exfoliation, sublayer splat exfoliation and deep crater.
- Enhancement in the magnitude of surface crater depth results in due to increase in normal load.
- At elevated temperature, the presence of TiO2 in alumina effectively binds the alumina grains which imparts the R-curve behavior through crack deflection, crack branching and crack bridging.
- The synergic effect of crack deflection, crack branching and crack bridging reduces the effectiveness of energy transfer to the target material results in increasing the fracture resistance of coating, thereby enhancing the wear resistance.

References

