Chromatic Strong Domatic Partition in Graphs

S. Balamurugan¹ and N. Anbazhagan²

¹PG Department of Mathematics, Government Arts College, Melur, Madurai – 625 106, Tamilnadu, India.
²Professor & Head, Department of Mathematics, Alagappa University, Karaikudi Tamilnadu, India.
Email: balapoojaa2009@gmail.com

Abstract

A vertex subset D is a chromatic strong dominating set if D is a strong dominating set and χ(< D >) = χ(G). The minimum cardinality of chromatic strong dominating set is called the chromatic strong domination number and is denoted by 𝛾𝑠𝑐(𝐺).

A chromatic strong domatic partition (csd-partition) of a graph G is a partition of V into chromatic strong dominating sets. The maximum cardinality of a partition of V into chromatic strong dominating sets is the csd-partition number and is denoted by 𝑑𝑠𝑐(𝐺).

AMS Subject Classification: 05C69
Key words: Domination, Strong domination, Chromatic Number, Domatic Number.

1. Introduction

All graphs considered here are finite, undirected and simple. Let $G = (V, E)$ be a graph of order n and size m. A subset D of V is called a dominating set of G if every vertex in V - D is adjacent to some vertex in D. Dominating sets were first studied by Berge [3] and Ore [8].

The domination number of a graph G is the minimum cardinality of a dominating set of G. The domatic number $d(G)$ of a graph $G = (V, E)$ is the maximum positive integer k such that V can be partition into k pairwise disjoint dominating sets $D_1, D_2, ..., D_k$. A partition of V into pairwise disjoint dominating sets is called a domatic partition. The concept of a domatic number was introduced in [5]. The word ‘domatic’ was created from the words ‘dominating’ and ‘chromatic’, in the same way the word ‘smog’ was created from the words ‘smoke’ and ‘fog’. In a certain sense, a domatic number is analogous to the chromatic number of a graph, which is the minimum positive integer k such that the vertex set can be partitioned into k pairwise disjoint stable sets. For $D \subseteq V$, the subgraph induced by D is denoted by $< D >$. Prof. E. Samapathkumar and L. Pushpalatha introduced the concept of strong domination in graphs. A set $D \subseteq V$ is called a strong dominating set if for every vertex $v \in V - D$, there exists a vertex $u \in D$ such that $uv \in E$ and $\deg(u) = \deg(v)$. The minimum cardinality of a strong dominating set is called the strong domination number of G and is denoted by $\gamma_s(G)$. The strong dominating set of cardinality $\gamma_s(G)$ is denoted by γ_s-set of G. A coloring of a graph G is an assignment of colors to all its vertices such that all pairs of adjacent vertices are assigned different colors. The chromatic number $\chi(G)$ is the minimum number of colors necessary to a coloring of G. A set $D \subseteq V$ is a chromatic strong dominating set if D is a strong dominating set and $\chi(< D >) = \chi(G)$. The minimum cardinality of a chromatic strong dominating set is called the chromatic strong domination number of G and...
is denoted by $\gamma_s^c(G)$.

2 Chromatic Strong Domatic Partition Sets

Definition 2.1 A chromatic strong domatic partition (csd-partition) of graph G is a partition of V into chromatic strong dominating sets. The maximum cardinality of a partition of V into chromatic strong dominating sets is the chromatic strong domatic partition number and is denoted by $d_{sc}^s(G)$.

Observation 2.2
1. For any graph G, $d_{sc}^s(G) \leq d_{ch}(G) \leq d(G) \leq \delta(G) + 1$
2. If a graph G has a pendant vertex, then $d_{sc}^s(G) \leq 2$
3. There exist graphs for which $d_{sc}^s(G) = \delta(G) + 1$. For example, $d_{sc}^s(P_8) = 2$ and $\delta(P_8) = 1$.

Definition 2.3 A graph G is said to be chromatic strong domatically full if $d_{sc}^s(G) = \delta(G) + 1$

Proposition 2.4 For any graph G, $d_{sc}^s(G) \leq \frac{n}{\gamma_s^c(G)}$

Proof: Let $\{V_1, V_2, \ldots, V_k\}$ be a maximum chromatic strong partition of V. Therefore $k = d_{sc}^s(G)$. Since V_i is a chromatic strong dominating set $|V_i| \geq \gamma_s^c(G), 1 \leq i \leq k$. Since $V = \bigcup_{i=1}^{k} V_i$, $n = \sum_{i=1}^{k} |V_i| \geq \sum_{i=1}^{k} \gamma_s^c(G), n \geq k \cdot \gamma_s^c(G)$. Therefore $k \leq \frac{n}{\gamma_s^c(G)}$. Therefore $d_{sc}^s(G) \leq \frac{n}{\gamma_s^c(G)}$

Proposition 2.5
1. If $\gamma_s^c(G) > \frac{n}{2}$, then $d_{sc}^s(G) = 1$
2. If G has a strong isolate vertex, then $d_{sc}^s(G) = 1$
3. If G has unique maximum clique, then $d_{sc}^s(G) = 1$
4. If G is χ-critical, then $d_{sc}^s(G) = 1$

Proposition 2.6
1. $d_{sc}^s(K_n) = 1$
2. $d_{sc}^s(K_{1,n-1}) = 1$
3. $d_{sc}^s(F_n) = 1$
4. $d_{sc}^s(D_{r,s}) = 1$
5. $d_{sc}^s(K^+_n) = 1$
6. $d_{sc}^s(W_n) = 1$
7. \(d_s^c(K_{m,n}) = \begin{cases}
1 & \text{if } m \neq n \\
\frac{m}{2} & \text{if } m = n
\end{cases} \)

8. \(d_s^c(C_n) = \begin{cases}
2 & \text{if } n \text{ is even} \\
1 & \text{if } n \text{ is odd}
\end{cases} \)

9. \(d_s^c(P_n) = \begin{cases}
2 & \text{if } n \geq 8 \\
1 & \text{if } 2 \leq n \leq 7
\end{cases} \)

Proposition 2.7

G is non trivial if and only if \(\gamma_s^c(G) \geq 2 \)

Theorem 2.8

For any non trivial graph \(G \), \(d_s^c(G) \leq \frac{n}{2} \)

Proof: It follows proposition 2.4 and 2.7

Theorem 2.9

For any graph \(G \) with even order \(n \), \(d_s^c(G) = \frac{n}{2} \) if and only if \(G = K_{n,n} \) or \(K_2 \)

Proof: If \(G = K_1 \) then \(d_s^c(G) = 1 = n \neq \frac{n}{2} \). Therefore \(G \neq K_1 \). Let \(G \neq K_2 \) and \(d_s^c(G) = \frac{n}{2} \). Let \(V_1, V_2, V_3, \ldots, V_n \) be a \(csd \)-partition of \(G \). Then \(|V_i| \leq 2 \) for all \(i \). Since \(n \geq 2 \), \(|V_i| \geq 2 \) for all \(i \). Therefore \(|V_i| = 1 \Rightarrow G = K_1 \). Therefore \(|V_i| = 2 \) for all \(i \). If \(V_i \) is independent for some \(i \), then \(\chi(G) = \chi(<V_i>) = 1 \). Hence, \(G = K_{n,n} \) and \(d_s^c(K_{n,n}) = \frac{n}{2} \). Thus, \(G = K_2 \), which is a contradiction to \(G \neq K_2 \). Therefore \(V_i \) is not independent for every \(i \).

Therefore, \(\chi(G) = \chi(<V_i>) = 2 \). Therefore \(G \) is nontrivial bipartite. Let \(X, Y \) be the bipartition of \(G \). Let \(X \cap V_i = \{x_i\} \) and \(Y \cap V_i = \{y_i\} \). Since \(V_1, V_2, V_3, \ldots, V_n \) is a partition of \(V \), \(|X| = |Y| = \frac{n}{2} \). Since \(V_i = \{x_i, y_i\} \) is a dominating set and \(X, Y \) are independent sets, each \(y_j \) is adjacent to \(x_i \) and each \(x_j \) is adjacent to \(y_i \). Since \(i \) is arbitrary, \(G \) is complete bipartite graph. Thus, \(G = K_{\frac{n}{2}, \frac{n}{2}} \)

Theorem 2.10

If a graph \(G \) has \(d_s^c(G) \geq 2 \), then \(\gamma_s^c(G) + d_s^c(G) \leq \left[\frac{n}{2} \right] + 2 \)

Proof: Let \(G \) be a graph with \(d_s^c(G) \geq 2 \). Then \(\gamma_s^c(G) \leq \left[\frac{n}{2} \right] \). Since \(G \neq K_1, \gamma_s^c(G) \geq 2 \), and so \(d_s^c(G) \leq \left[\frac{n}{2} \right] \). If either \(\gamma_s^c(G) = 2 \) or \(d_s^c(G) = 2 \), then the bound obviously holds. If \(\gamma_s^c(G) \geq 4 \) and \(d_s^c(G) \geq 4 \), then since \(\gamma_s^c(G) d_s^c(G) \leq n \), we have \(\gamma_s^c(G) \leq \left[\frac{n}{d_s^c(G)} \right] \) and \(d_s^c(G) \leq \left[\frac{n}{\gamma_s^c(G)} \right] \). That is, \(\gamma_s^c(G) \leq \left[\frac{n}{4} \right] \). Hence, \(\gamma_s^c(G) + d_s^c(G) \leq 2 \left[\frac{n}{4} \right] < \left[\frac{n}{2} \right] + 2 \). Let \(d_s^c(G) = 3 \) or \(\gamma_s^c(G) = 3 \). Then \(\gamma_s^c(G) + d_s^c(G) \leq 3 + \left[\frac{n}{3} \right] \). Since
\[3 = d_\gamma'(G) \text{ or } \gamma'(G) \leq \left\lfloor \frac{n}{2} \right\rfloor \text{ we have } n \geq 6. \text{ For } n \geq 6, \quad 3 + \left\lfloor \frac{n}{2} \right\rfloor \leq \left\lfloor \frac{n}{2} \right\rfloor + 2. \text{ Therefore } \gamma'(G) + d_\gamma'(G) \leq \left\lfloor \frac{n}{2} \right\rfloor + 2. \]

Theorem 2.11 For any graph \(G \), \(4 \leq d_\gamma'(G), d_\gamma(G) \leq \frac{n^2}{4} \) with equality if and only if \(G = K_2 \).

Proof: Since \(n > 1 \) both \(G \) and \(\overline{G} \) having chromatic strong domatic number at least 2. Thus, \(4 \leq d_\gamma'(G), d_\gamma(G) \). This lower bound is sharp may be seen by taking \(G = K_2 \). Since \(d_\gamma'(G) \leq \frac{n}{2} \) and \(d_\gamma(G) \), we get the upper bound if \(n > 1 \). \(d_\gamma'(G), d_\gamma(G) = \frac{n^2}{4} \) if and only if \(d_\gamma'(G) = \frac{n}{2} \) and \(d_\gamma(G) = \frac{n}{2} \). That is if and only if \(G = K_{\frac{n}{2}} \) or \(\overline{K_{\frac{n}{2}}} \) and \(d_\gamma'(G) = 1 \). Therefore \(d_\gamma'(G), d_\gamma(G) = \frac{n}{2} = \frac{n^2}{4} \) if and only if \(n = 2 \). that is \(G = K_2 \). Let \(G = K_{\frac{n}{2}} \). Then \(\overline{G} = K_2 = K_{\frac{n}{2}} \). Therefore \(d_\gamma'(G), d_\gamma(G) = \frac{n^2}{4} \) if and only if \(\overline{K_{\frac{n}{2}}} \).

Theorem 2.12 For any graph \(G \), \(d_\gamma'(G) + d_\gamma(G) \leq n \), with equality if and only if \(G = K_2 \) or \(\overline{K_2} \).

Proof: Let \(n \geq 2 \). \(d_\gamma'(G) + d_\gamma(G) \leq \frac{n}{2} + \frac{n}{2} = n \). \(d_\gamma'(G) + d_\gamma(G) = n \) if and only if \(d_\gamma'(G) = \frac{n}{2} = d_\gamma(G) \). That is if and only if \(G = K_{\frac{n}{2}} \) or \(\overline{K_2} \) and \(\overline{G} = K_{\frac{n}{2}} \) or \(\overline{K_2} \). Let \(G = K_{\frac{n}{2}} \) or \(\overline{K_2} \) or \(\overline{K_2} \). In the case, \(d_\gamma'(G) = \frac{n}{2} \) and \(d_\gamma(G) = 1 \). Therefore \(d_\gamma'(G) + d_\gamma(G) = \frac{n}{2} + 1 = n \) if and only if \(n = 2 \). Therefore \(G = K_2 \) and \(\overline{G} = K_{\frac{n}{2}} \). If \(G = \overline{K_2} \), then \(\overline{G} = K_2 = K_{\frac{n}{2}} \). Then also \(d_\gamma'(G) + d_\gamma(G) = 2 = n \).

Theorem 2.13 Let \(G \) be a graph such that \(G \) and \(\overline{G} \) are not chromatically strong domatically full. Then \(d_\gamma'(G) + d_\gamma(G) \leq n - 1 \).

Proof: \(d_\gamma'(G) \leq \delta(G) \) and \(d_\gamma(G) \leq \delta(\overline{G}) \). Therefore \(d_\gamma'(G) + d_\gamma(G) \leq \delta(G) + \delta(\overline{G}) = n - 1 \).

Example 2.14 If \(G = C_4 \), then \(G \) is not domatically full and \(\overline{G} = 2K_2 \) is also not domatically full. Here, \(d_\gamma'(G) + d_\gamma(G) = 2 + 1 = 3 = 4 - 1 = n - 1 \).

Corollary 2.15 Under the hypothesis of the Theorem, if equality holds, then \(G \) is regular.

Proof: Suppose \(G \) is not regular. Then \(\delta(G) \not< \Delta(G) \). \(d_\gamma'(G) + d_\gamma(G) \leq \delta(G) + \delta(\overline{G}) = n + 1 \), a contradiction. Therefore \(G \) is regular.

Theorem 2.16 Let \(G \) be a graph such that \(G \) and \(\overline{G} \) are chromatically strong domatically full. Let \(\delta(G) \geq 1 \) and \(\Delta(G) \leq n - 2 \). Then \(d_\gamma'(G) + d_\gamma(G) = n - 1 \) if and only if \(G \) are \(\overline{G} \) is \(C_4 \).

Proof: Proceeding as in ?? [Hedetniemi Book]. We get the result.

Theorem 2.17 For any graph \(G \), \(\gamma'_\gamma(G) + d_\gamma(G) \leq n + 1 \).

Proof: Suppose \(n = 1 \). Then \(G = K_1 \). \(\gamma'_\gamma(G) = 1 \). \(d_\gamma(G) = 1 \). Therefore \(\gamma'_\gamma(G) + d_\gamma(G) = 2 = n + 1 \). Let \(n > 1 \). Suppose \(\gamma'_\gamma(G) = n \). Then \(d_\gamma(G) = 1 \). Therefore \(\gamma'_\gamma(G) + d_\gamma(G) = n + 1 \). Suppose \(\gamma'_\gamma(G) < n \). That is \(\gamma'_\gamma(G) \leq n - 1 \).
Case: $\gamma_s^c(G) \leq \frac{n}{2}$. Since $n > 1$, $d_s^c(G) \leq \frac{n}{2}$. Therefore $\gamma_s^c(G) + d_s^c(G) \leq n < n + 1$. Case: $\gamma_s^c(G) \leq \frac{n}{2}$.

Since $\gamma_s^c(G) \leq n$, $d_s^c(G) \leq \frac{n}{2} = 2$. Therefore $\gamma_s^c(G) + d_s^c(G) \leq n - 1 + 2 = n + 1$. Hence the theorem.

Theorem 2.18 Let G be a graph without strong vertices. Then $\gamma_s^c(G) + d_s^c(G) = n + 1$ if and only if

(i). G is connected and G is χ-critical

(ii). G is disconnected and either $G = K_n$ or G has exactly one non trivial component which is χ-critical.

Proof: Let $n = 1$. Then $\gamma_s^c(G) + d_s^c(G) = 2$ when $G = K_1$. $\gamma_s^c(G) + d_s^c(G) = n + 1$ if and only if either $\gamma_s^c(G) = n$, $d_s^c(G) = 1$ or $\gamma_s^c(G) = n - 1$ and $d_s^c(G) = 2$ when $\gamma_s^c(G) = n - 1$, then $d_s^c(G) \leq \frac{n}{n - 1} < 1 + \frac{1}{n - 1} < 2$. $\gamma_s^c(G) + d_s^c(G) < n + 1$, a contradiction. Therefore $\gamma_s^c(G) + d_s^c(G) = n + 1$ if and only if $\gamma_s^c(G) = n$, $d_s^c(G) = 1$. That is if and only if G is χ-critical and connected or G is disconnected and $G = K_n$ or G has exactly one non-trivial component which is χ-critical.

References

