Abstract- Diabetic foot ulcer became more common now a days and it leads to very danger stage if it is not taken care properly. It makes more worrying in the patient’s life and lacking consideration may lead removal of the leg. Making segmentation of ulcer image can help a better understanding of stages of ulcer currently. Doctors and clinicians examine the wound status and healing status visually and it may not be an accurate value all the time and patients themselves do not play an active role in their life. In this study, we segment the image using watershed algorithm and region growth segmentation. We classify it using SVM single stage classifier. It finally gives the result as the stages of wounded image. This is a cost-effective examination method and this allows patients or their daily wound healing process. It saves travel cost and reduces the health care expensive. Our system can be efficiently used by both clinicians and patients to analyze and segment the wound healing in a better manner.

Keywords- Support vector machine, Wound, Foot, Feature extraction, Image capture, Image segmentation.

1. INTRODUCTION

The aim of this project is of detecting the diabetic foot ulcer and segmenting the stages as per their wound area. In research most of the people having foot ulcer and in US research says 5-6 million people are getting affected by this Problem. To detect the region, we use super pixel based on Bag-of-Words. Super pixels used to measure the feature of sub-region rather than individual pixels. To find the object color exactly has to eliminate the background colors [4]. Idea of dim level vitality, discrete entropy and relative entropy are utilized to gauge the integrity of the versatile picture upgrade systems. Image enhancement is very much important it is critical technique for different areas of pattern recognition. By separating smooth and detail areas of an image. In the
processing the region of interest in complex background images using a genetic algorithm with wavelet based preprocessing. The contour detection problem is formulated as an optimization process that seeks the outline to minimize an energy function based on an active contour model. Collective of images are stored and will be constructed on a cloud-based server to store the wound. The mean-shift based segmentation algorithm operates on each pixel of an image, and the computation, which takes place at each pixel.

2. LITERATURE SURVEY

The execution of disconnected prepared articles finders are normally corrupted in unconstrained video situations because of variation enlightenments, foundations and camera perspective. Besides, most question finders are prepared utilizing Haar-like highlights like steady shading designs. Here we use an appropriate super pixel-based Bag-of-word (BoW) model to iteratively refine the yield of a bland identifier. We create and calculation to be done to fragment the protest from the background. Therefore it produces a yield of the correct question districts rather than the bouncing boxes produced by generally identifiers. As a rule, it takes location jumping boxes of a non-specific indicator as information and produces the identification yield with higher normal accuracy and exact protest locales. The examinations on four late datasets show the viability of our approach and fundamentally enhance the condition of-craftsmanship identifier by 5-16% in normal exactness. A powerful strategy to enhance non-Segmentation of Wounds in the Combined Color-Texture Feature Space specific identifiers and concentrate question districts utilizing a super pixels-based Bag-of-Words demonstrate. To enhance non-specific indicators and concentrate question locales utilizing a super pixels-based Bag-of-Words display. Our strategy catches rich data about people by super pixels; consequently it is exceptionally discriminative and hearty against appearance changes. We utilize a section based human locator to get starting names and step by step refine the discoveries iteratively. We additionally show a locale extraction calculation that concentrates the areas of articles. We exhibited by tests that our strategy adequately enhances the execution of protest indicators in four late datasets. The versatile complexity upgrade technique has been connected to preparing of different kinds of pictures utilizing histogram balance calculations, where the picture differentiate has been extended. Fast approach for the discovery of cerebrum tumors and distortion limits in restorative pictures utilizing a hereditary calculation with wavelet based preprocessing. The shape identification issue is figured as a streamlining procedure that looks for the form of the question so to speak a vitality work in view of a dynamic shape...
demonstrates. Survey division as a ground isolation issue prompts another approach - dispensing with the foundation leaves the figure or protest of intrigue. To discover conceivable protest hues, we first discover foundation hues and dispense with them. We at that point utilize an edge picture at a proper scale to dispense with those parts of the picture which are not in center and don't contain noteworthy structures. The edge data is joined with the shading based foundation disposal to deliver question areas. We test our approach on a database of flying creature pictures. They demonstrate that in 87% of 450 pictures tried, the division is adequate to decide the shades of the flying creature effectively for recovery purposes. Diabetic foot ulcers speak to a huge medical problem. As of now, clinicians and medical attendants for the most part construct their injury evaluation in light of visual examination of wound size and recuperating the status. Consequently, love quantitative and savvy examination strategy that empowers the patients and their guardians to play a more dynamic part in day by day wound care conceivably can quicken wound recuperating, spare travel cost and decrease medicinal services costs. Considering the pervasiveness of advanced cells with a high-determination computerized camera, evaluating wounds by breaking down pictures of perpetual foot ulcers is an alluring choice.

3. THE PROPOSED SYSTEM

We propose a new watershed and region growth algorithm to overcome the weaknesses of the previous schemes. Ideas can be summarized as follows (a) first we store the set of data’s of both initial stage and final stage images in separate folder for the comparison purpose. In this we collect all the image by consulting the doctors about all the collected image and there values are match according to their conditions (b) Next we get the image of the wounded area. For this utilized the image capture box Ulcers. (c) Captured image is then segmented using both the region growth segmentation and watershed algorithms. These are best algorithm used for segmentation purpose then the algorithm used in previous system. It will segment only the wounded area. (d) For the area calculation we use the segmented image and the wounded area is calculated. In our system it calculated only the affected area. (e) Finally, the wound area classification has been done in the form of a single-stage support vector machine classifier approach. It will compare the already stored database and show whether it is initial or final stage and also it shows the percentage of the wounded area.

4. WORKING OF PROPOSED SYSTEM

First, required picture is chosen and it is resized to center around the required injured territory. At that point ordinary picture is changed over into double picture. To play out
this we first change over the genuine picture into grayscale picture and after that it is changed over into double picture. We play out this to get the unmistakable force of the picture. Thresholding is performed for the above conversion. Thresholding is the easiest technique for picture division. From a grayscale picture, Thresholding can be utilized to make paired pictures.

The capacities utilized as a part of mat lab for the conversion reason for existing are, \( I = \text{rgb2gray} \text{ (RGB)} \), it changes over the true color picture RGB to the grayscale force picture. The rgb2gray work changes over RGB pictures to grayscale by disposing of the tone and immersion data while holding the luminance. In the wake of changing over the genuine nature picture into grayscale picture then it has to change over into parallel picture. For paired conversion work we utilized is \( \text{BW} = \text{im2bw} \text{ (I, level)} \), it changes over the grayscale picture I to parallel picture BW, by supplanting all pixels in the info picture with luminance more prominent than level with the esteem 1 (white) and supplanting every single other pixel with the esteem 0 (dark) or \( \text{BW} = \text{im2bw(RGB,level)} \) changes over the true color picture RGB to a twofold picture.

**Fig. 1 Proposed Architecture diagram**

We have to play out the division we have to utilize the watershed and area development division. Watershed calculation is utilized as a part of picture handling fundamentally for division purposes. In the investigation of picture handling, a watershed is a change characterized on a topographical watershed, or waste partition, which isolates nearby seepage bowls. The watershed change treats the picture it works upon like a topographic guide, with the shine of each point...
speaking to its tallness, and finds the lines that keep running along the highest points of edges..

4.1 Watershed by the Drop of Water Principle

Naturally, the watershed is a detachment of the provincial minima from which a drop of dilute can stream towards unmistakable minima. A formalization of this instinctive thought was given to characterizing a watershed of an edge-weighted chart.

4.2 Region Growth Segmentation

The initial phase in area developing is to choose an arrangement of seed focuses. Seed point choice depends on some client model (for instance, pixels in a specific grayscale extend, pixels uniformly divided on a matrix, and so forth.). The underlying area starts as the correct area of these seeds. The locales are then developed from these seed focuses to contiguous focuses relying upon an area enrollment standard. The model could be, for instance, pixel force, grayscale surface, or shading. Since the areas are developed based on the rule, the picture data itself is essential. For instance, if the paradigm were pixel power edge esteem, information of the histogram of the picture would be useful, as one could utilize it to decide an appropriate limit an incentive for the district enrollment rule.

4.2.1 Advantages:
- District developing techniques can accurately isolate the areas that have similar properties we characterize.
- District developing techniques can give the first pictures which have clear edges with great division comes about. The idea is basic. We just need few seed focuses to speak to the property we need, at that point develop the area.
- We can decide the seed focuses and the criteria we need to make.
- We can pick the numerous criteria in the meantime.

4.3 SVM (Support vector machines) Classification

Here we adopted a Support Vector Machine (SVM) classifier for automatic extraction of wound region from an image [3]. Support vector machines are supervised learning models with associated learning calculations that examine information utilized for classification and relapse investigation has been done in machine learning [1]. Characterizing information has been one of the real parts in machine learning. The challenge is to prepare the machine to comprehend structure from information and mapping with the privilege class name for the best outcome. The hyper plane has the biggest separation to the closest preparing information purposes of any class.
5. EXPERIMENTAL RESULT

5.1 PREPROCESSING

In preprocessing, the original image is converted into gray scale image. The preprocessing is done, which is utilized for resizing the injury picture [5,6]. Resizing will make exceptional changes a picture, and keeping away from or limiting undesirable 'ancient rarities' is of most noteworthy significance. Maybe only a slight Shave of the edges or a broader Crop of the picture will deliver a superior and more alluring result than a discount resize of the picture. It by and large will look better and the region left will be an ideal duplicate of the first. The first step of our method is to generate a Red-Yellow-Black-White (RYKW) probability map, which then guides the segmentation process using either optimal Thresholding or region growing [2].

The past yield has changed over into RGB shading (red board). Changing over a shading picture into red picture is exceptionally basic. We should simply rehash 3 basic strides for every pixel of the image. Get the R estimation of the pixel. Set the G and B incentive to zero. Save the new RGB esteem in the pixel. As we are changing over the shading picture into Red picture, we are just concentrating on the Red part esteem. While changing over the shading picture to Green picture we will consider the Green part in like manner for blue picture we will just think about the Blue segment.
5.2 SEGMENTATION

In segmentation we will sum all the three panels (i.e. red panel, green panel, blue panel) into single image. Subsequent to reproducing the picture we superimpose it with the first picture, clean the edges of the divided picture and figure foundation markers. At that point we apply watershed change to the remove change of the picture and after that see the outcome that is sectioned picture.

5.3 Classification

In classification it says whether the wound is initial or final stage. It compares the above image into the store database and says the resulted stage. And it also give the percentage value based on wound area calculation.
6. CONCLUSION

We proposed an effective method with accurate value of wounded area based on region growth segmentation, watershed algorithm and classifying it into stages as initial or final based on SVM classifier. First the images are segmented into super-pixel. Further refinement we remove non-wounded regions and segment the wounded region to recover. In the preprocessing stage change of a color picture to grayscale picture is not novel and diverse weighting of the shading channels viably speaks to the impact of shooting high contrast film with various hued photographic channels. The value and percentage of wounded area has determined and then it show the stages of wound whether it is in initial or final stage with the comparison of database image.

7. LITERATURE SURVEY


