COMPACT PRINTED ELLIPTICAL SLOTTED ANTENNA FOR MULTIBAND APPLICATIONS

M Lavanya, K V Prasanth, B T P Madhav
Department of ECE, K L University, AP, India

Abstract: This paper presents the design of elliptical slot antenna for multiband applications. The suggested antenna covers L-band, WIMAX, WLAN and X band. By placing inverted T-shaped stub and three reverse U-shape stubs, the resonating characteristics of the antenna are observed. The resonating frequencies are 1.95, 4.14, 5.05, 5.89 and 9.15 GHz respectively. The designed antenna shows good return loss (S11<-10dB) and compact size which is relevant for most of the wireless applications. Antenna possessing maximum gain of 3.35 dB with efficiency more than 82% in the operating bands. H-plane showing omni-directional radiation pattern and E-plane exhibiting bi-directional radiation pattern. The performance of antenna is analyzed by using HFSS tool.

Keywords: Microstrip Antenna, Multi band, T-slot, U-slot.

I. Introduction

At present wireless communication has diligent accomplishment so, the consequent technologies need compact antenna with the multiband aspects to reduce the utilization of more antennas [1]. As increasing demand in the electronics and communication systems, there is more demand for wireless systems also. The compact design of antenna operates at different wireless applications such as L-band, WLAN, WIMAX, X-band are proposed by the researchers. The microstrip technology based antennas has more advantages like low cost, low profile, compact size, easy implementation. If more number of antennas are used electromagnetic interference occurs so, to avoid that, there is a need of multiband antenna design.

Micro strip patch antennas can receive or transmit the electromagnetic waves [2-3]. In case of adequate operation of microstrip antenna, the role of feeding is essential to enhance the input impedance matching. The patch antenna has different feeding techniques. Line feed is used because of its benefits like easy to model, easier method to fabricate.

In multi band there are different types of slots are there. T-slot [4], U-slot [5], flared shape with V-sleeve [6], Y-shape [7], multi fractal structure [8]. A quarter wave length stub is placed near feed T-stub in radiating patch, U-stub near micro strip feed line these stubs directs the antenna to operate at dual band. To improve the bandwidth fork shape slit placed on the ground [9-14]. U-strip are placed to produce different multiband and impedance is high at inverted T slot. A C-slot is placed near the inverted T-slot on radiating patch and dual band is produced. Microstrip feed line is used in the design of monopole antenna. Multiband of monopole antenna achieved initially by etching of radiating patch and by inserting the quarter wave in the middle of radiating patch [15-16]. Multiband covers the 1.95 GHz L-band used for personal computers, WIMAX at 4.14, lower WLAN 5.5, upper WLAN 5.88 and X-band at 9.15 GHz.

In this paper we mainly discussed about the printed slot antenna for multiband operation and its radiation performance. The inverted T-shape and U-shape printed slot are tested finally with parametric analysis and presented the results in the subsequent sections.

II. Antenna Design

The geometry of the proposed antenna with inverted T-shaped structure is shown in Fig 1. Antenna is printed on FR4-epoxy with relative permittivity 4.4, relative permeability 1 and dielectric loss tangent 0.02.

Fig 1. Geometry of antenna model, (a) Basic multiband monopole antenna2,(b) T- shape slot antenna, (c) U-shape slot antenna, (d) Proposed antenna with dimensions
The proposed antenna design has been done in Ansys HFSS with optimization techniques and presented the simulation studies in this work. Fig.1(a) Initially gives the antenna of hexagonal turn shape. The substrate thickness is 0.8 and antenna length L and width W is $W_{sb} \times L_{sb} = 20 \times 20 \text{mm}$. The hexagonal shape is inserted with paired ellipse on radiating patch and major radius of ellipse is $MR_1 = 2.2 \text{ mm}$ for wider bandwidth. Fig.1(b) consisting the inverted T-shape slot on top side vertical is fixed on the radiating patch for WIMAX band application. From Fig 1(c) three inverted U-shape stub are used for lower WLAN, upper WLAN and X-band satellite system. Fig 1(d) having rectangular ground of $W_f = 2 \text{ mm}$. The microstrip feed line 50 $\Omega$ $W_f \times L_f$ antenna covers bandwidth partially. In ground plane for good impedance bandwidth there should be smooth transmission from one resonator to another resonator. The inverted T-slot and U-slot length, width is shown in Table 1. In free space electromagnetic (EM) wave is $c = 3 \times 10^8$ where ‘c’ is the speed of EM wave.

**TABLE 1. DIMENSIONS OF THE ANTENNA**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Dimension(mm)</th>
<th>Parameter</th>
<th>Dimension(mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$m_1$</td>
<td>6.44</td>
<td>$M_1$</td>
<td>-2</td>
</tr>
<tr>
<td>$m_2$</td>
<td>5</td>
<td>$W_g$</td>
<td>20</td>
</tr>
<tr>
<td>$m_3$</td>
<td>11.8</td>
<td>$W_a$</td>
<td>8</td>
</tr>
<tr>
<td>$L_1$</td>
<td>4.1</td>
<td>$w_2$</td>
<td>1.25</td>
</tr>
<tr>
<td>$L_2$</td>
<td>8.11</td>
<td>$w_3$</td>
<td>2.57</td>
</tr>
<tr>
<td>$T_1$</td>
<td>6</td>
<td>MR1</td>
<td>2.2</td>
</tr>
<tr>
<td>$T_2$</td>
<td>2.2</td>
<td>MR2</td>
<td>8</td>
</tr>
<tr>
<td>$t_1$</td>
<td>3.56</td>
<td>$W_f$</td>
<td>2</td>
</tr>
<tr>
<td>$t_2$</td>
<td>11.8</td>
<td>$L_f$</td>
<td>10</td>
</tr>
</tbody>
</table>

The central frequency of multiband along with return loss is operated by the length of T-shape inverted stub and different slots.

**III. Results And Discussion**

To demonstrate the compact printed slot design, antenna is fabricated on FR4. The proposed antenna has simulated and measured with return loss, gain total and antenna is having good return loss of -23.51. The proposed antenna has frequency band 1.99-9.15 for L-band frequency band, 1.995-2.0153 for personal computer applications, 4.074-4.27 WIMAX, 4.78-5.48 lower WLAN with return loss -23.59, 5.78-6.019 upper WLAN with return loss -11.02 and 8.97-9.48 X-band used for satellite communication with return loss -14.325 of different multiband wireless application.

The antenna iterations are simulated and presented in the below Fig 2. The proposed antenna simulated values providing reflection coefficient less than -10 dB. The antenna’s resonating frequency at which $S_{11}$ magnitude is obtained with minimum dip.

![Fig. 2 Reflection coefficient of antenna iterations](image1)

![Fig. 3 Simulated return loss for proposed antenna](image2)

![E-PLANE](image3) ![H-PLANE](image4)
Fig 4. simulated radiation pattern of E&H plane at (a) 1.9 GHz (b) 5.8 GHz (c) 7 GHz

The E-field co-polarization and cross-polarization and H-field co-polarization and cross-polarization are shown in Fig 4. From the pattern it is observed bi-direction pattern for E-plane and omni-direction pattern for H-plane.

The current distribution shows perfect impedance matching and here it indicates that the current is uniformly distributed over the region. The simulated current distribution at 5 GHz is shown in Fig 5. The E-field distribution over the antenna at 5 GHz is shown in Fig 6.

Fig 5. Current distribution at 5 GHz

Fig 6. E-field distribution at 5 GHz

Fig 7. 3D Pattern of radiation at (a) 1.95 GHz, (b) 4.14 GHz, (c) 5.05 GHz, (d) 5.88 GHz, (e) 7 GHz and (f) 9.15 GHz
Antenna radiation pattern with peak realized gain values can be observed from Fig 7. The parametric analysis study for the proposed antenna from 2.2 to 4.4 of radiating ellipse radius is shown in Fig 8.

![Fig 8. parametric analysis for radiating ellipse radius from 2.2 mm to 4.4 mm](image)

By changing the radius of the ellipse from 2.2 mm to 4.4 mm, the resonant frequency values are derived at 4.4mm with good return loss of -38.51 dB. The resonant frequency for the 2.2 mm with return loss -12.53dB for the resonant frequency for the 3 mm with return loss -16.2dB, for the 3.2 mm the return loss is -22.8dB, for 4mm return loss -29.12dB. So, by measuring the all values return loss is high for 4.4mm. The parametric analysis successfully studied

IV. Conclusion

In this paper a compact antenna size of 20x20 mm for multiband characteristics have been analysed and demonstrated. The multibands obtained for the proposed antenna are L-band, WIMAX, upper WLAN, lower WLAN, X-band. The simulated antenna shows good impedance bandwidth at resonating frequencies and considerable radiation characteristics. The proposed antenna exhibits good return loss $S_{11} < -10$ dB at operating bands and peak realized gain more than 3.3 dB. Antenna showing excellent radiation efficiency at resonating frequencies, which shows the applicability of the antenna at desired application bands.

Acknowledgements

Authors like to express their gratitude to department of ECE of K L University and DST through ECR/2016/000569, SR/FST/ETI-316/2012 and EEQ/2016/000604.

References

wireless communication applications,” Electron.

MSP Spiral Slot Antenna with Defected Ground
Structure”, ARPN Journal of Engineering and

Resonator Based Multiband Defected Ground
Structured Antenna”, Journal of Engineering and
Applied Sciences, Vol 11, No 6, pp 1417-1422,
2016.

Monopole Slot Antenna for Multiband
Applications”, ARPN Journal of Engineering and

Fractal Antenna”, International Journal of Pure and
Applied Mathematics, Vol 115, No. 7, pp 459-463,
2017.

based on Substrate Permittivity”, ARPN Journal of
Engineering and Applied Sciences, Vol. 9, No. 6,

[16] P Syam Sundar, Sarat K Kotamraju, T V
Ramakrishna, “Novel Miniatured Wide Band
Annular Slot Monopole Antenna”, Far East Journal
of Electronics and Communications, Vol 14, No 2,
pp 149-159, 2015.