Some Properties of *- n-class Q Operators

D.Senthilkumar¹ and S.Parvatham²

¹,²Post Graduate and Research Department of Mathematics, Government Arts College, Coimbatore-641 018.
¹senthilsenkumhari@gmail.com
²parvathasathish@gmail.com

Abstract

In this paper, we introduce a new class of operators, which we call the class of *-n-class Q operators. This class of operators contains the class of * paranormal operators. We prove some basic properties and a structure theorem for *-n-class Q operators. We also give the matrix representation for this class of operators.

AMS Subject Classification: 47A05, 47A11, 47B47.
Key Words and Phrases:Class Q operators, spectrum, approximate point spectrum.

1 Introduction and preliminaries

Let H be an infinite dimensional separable complex Hilbert space. Let $B(H)$ be the algebra of all bounded linear operators acting on H. Let T be an operator on H. An operator T is called class Q [2], if

$$T^*T^2 - 2T^*T + I \geq 0,$$

equivalently $T \in Q$ if $\|Tx\|^2 \leq \frac{1}{2}(\|T^2x\|^2 + \|x\|^2)$ for every $x \in H$. It was also proved that T is paranormal if and only if λT is in class Q for all $\lambda > 0$ and every paranormal operator is a normaloid of class Q. Also he showed that the restriction of T to an invariant subspace is again a class Q operator.

Devika, Suresh [1], introduced a new class of operators which we call the quasi class Q operators and it is defined as for $T \in B(H)$,

$$\|T^2x\|^2 \leq \frac{1}{2}(\|T^3x\|^2 + \|Tx\|^2),$$

for every $x \in H$. A k-quasi class Q operator is defined as follows [3]. An operator T is said to be k-quasi class Q operator if
\[\|T^{k+1}x\|^2 \leq \frac{1}{2}(\|T^{k+2}x\|^2 + \|T^kx\|^2), \]

for every \(x \in H \) and \(k \) is a natural number. D. Senthilkumar, prasad T in [4], has defined the new class of operators, which we call \(M \)-class Q operators. An operator \(T \) is called \(M \)-class Q if for a fixed real number \(M \geq 1 \) \(T \) satisfies

\[M^2T^*T^2 - 2T^*T + I \geq 0, \]

or equivalently \(\|Tx\|^2 \leq \frac{1}{2}(M^2\|T^2x\|^2 + \|x\|^2) \) for every \(x \in H \) and for a fixed real number \(M \geq 1 \). In [6], Youngoh Yang and Cheoul jun Kim introduced a class Q* operators if

\[T^*T^2 - 2TT^* + I \geq 0, \]

then \(T \) is called class Q* operators. He also proved that if \(T \) is class Q* if and only if \(\|T^*x\|^2 \leq \frac{1}{2}(\|T^2x\|^2 + \|x\|^2) \) for every \(x \in H \). Authors have introduced classes of quasi class Q*, k-quasi class Q*, M-class Q* and studied properties of these classes of operators.

If \(T \in B(H) \), we shall write \(N(T) \) and \(R(T) \) for the null space and the range of \(T \), respectively. Also, let \(\sigma(T) \) and \(\sigma_a(T) \) denote the spectrum and the approximate point spectrum of \(T \), respectively. Let \(\sigma_p(T), \pi(T) \), \(E(T) \) denotes the point spectrum of \(T \), the set of poles of the resolvent of \(T \), the set of all eigenvalues of \(T \) which are isolated in \(\sigma(T) \), respectively. The spectrum \(\sigma(T) \) of \(T \) is the set of \(\lambda \) such that \(T - \lambda \) is not invertible on all of the Hilbert space, where the \(\lambda \)'s are complex numbers and \(I \) is the identity operator.

In this paper, we introduce a new class of operators, which we call the class of *-\(n \)-class Q operators. This class of operators contains the class of * paranormal operators. We prove some basic properties and a structure theorem for *-\(n \)-class Q operators. We also give the matrix representation for this class of operators and we prove that the restriction of *-\(n \)-class Q operator \(T \) to an invariant subspace is again *-\(n \)-class Q operator.

2 Main results

In this section we have defined and give some properties of *-\(n \)-class Q operators.

Definition 1. An operator \(T \in B(H) \) is said to be *-\(n \)-class Q operator if for every positive integer \(n \geq 2 \) and for every \(x \in H \)

\[\|T^*x\|^2 \leq \frac{1}{1+n}(\|T^{1+n}x\|^2 + n\|x\|^2). \]

Theorem 2. For each positive integer \(n \geq 2 \), \(T \) is *-\(n \)-class Q operator if and only if \(T^{*1+n}T^{1+n} - (1 + n)TT^* + nI \geq 0 \).

Proof. Since \(T \) is *-\(n \)-class Q operator, then

\[\|T^*x\|^2 \leq \frac{1}{1+n}(\|T^{1+n}x\|^2 + n\|x\|^2) \]
for every $x \in H$ and for any positive integer $n \geq 0$. Then
\[
\|T^{1+n}x\|^2 + n\|x\|^2 \geq (1 + n)\|T^*x\|^2
\]
\[
\|T^{1+n}x\|^2 - (1 + n)\|T^*x\|^2 + n\|x\|^2 \geq 0
\]
\[
\langle T^{1+n}x, T^{1+n}x \rangle - (1 + n)\langle T^*x, T^*x \rangle + n\langle x, x \rangle \geq 0
\]
\[
\langle (T^{1+n}T^{1+n} - (1 + n)TT^* + n)x, x \rangle \geq 0
\]
\[
T^{*1+n}T^{1+n} - (1 + n)TT^* + nI \geq 0
\]
\[
\square
\]

Theorem 3. If $T \in B(H)$ is *-class Q operator then T is *-n-class Q operator.

Proof. Let $T \in B(H)$ is *-class Q operator, then $T^2T^2 \geq 2TT^* - I$. We use induction principle, when $n = 1$, the result is true. When $n = 2$, $T^3T^3 - (3)TT^* + 2I \geq T^*(2TT^* - I)T - 3TT^* + 2 \geq 0$. Now we assume the result is true for $n = k - 1$. Then for $n = k$, $T^{*1+k}T^{1+k} - (1 + k)TT^* + kI \geq 0 \quad \square$

Corollary 4. If $T \in B(H)$ is *-n class Q operator then T is *-$n + 1$-class Q operator.

Corollary 5. If $T \in B(H)$ is *-n class Q operator then αT is also *-n-class Q operator.

Theorem 6. Let $T \in B(H)$. If $\lambda \frac{1}{\lambda} T$ is an operator of *-n-class Q, then T is *-n-paranormal operator for all $\lambda > 0$.

Proof. Since $\lambda \frac{1}{\lambda} T$ is an operator of *-n-class Q then
\[
(\lambda \frac{1}{\lambda} T)^{(1+n)}(\lambda \frac{1}{\lambda} T)^{1+n} - (1 + n)(\lambda \frac{1}{\lambda} T)(\lambda \frac{1}{\lambda} T)^* + nI \geq 0
\]
By multiplying $|\lambda|^{1+n}$ and letting $|\lambda| = \mu$, we have T is *-n-paranormal operator for all $\lambda > 0. \quad \square$

By simple calculation we get the following results.

Theorem 7. If *-n-class Q operator T doubly commutes with an isometric operator S, then TS is an operator of *-n-class Q.

Theorem 8. If a *-n-class Q operator $T \in B(H)$ is unitarily equivalent to operator S, then S is an operator of *-n-class Q.

Theorem 9. If $T \in B(H)$ is of *-n class Q operator for a positive integer n, $0 \neq \lambda \in \sigma_p(T)$ and T is of the form $T = \begin{pmatrix} \lambda & T_2 \\ 0 & T_3 \end{pmatrix}$ on $H = \ker(T - \lambda) \oplus \text{ran}(T - \lambda)$, then 1. $T_2 = 0$ and 2. T_3 is *-n-class Q operator.

Proof. Let $T = \begin{pmatrix} \lambda & T_2 \\ 0 & T_3 \end{pmatrix}$ on $H = \ker(T - \lambda) \oplus \text{ran}(T - \lambda)$. Without the loss of generality assume that $\lambda = 1$, then by Theorem 2, $T^{*1+n}T^{1+n} - (1 + n)TT^* + nI \geq 0$.

131
Now,
\[T^{1+n} = \left(\frac{1}{0} \sum_{j=0}^{n} T_2 T_3^{n-j} \right) \] and
\[T^{*1+n} = \left(\frac{1}{0} \sum_{j=0}^{n} T_2 T_3^{n-j} T_3^{*1+n} \right) \]
\[T^{*1+n} T^{1+n} = \left(\frac{1}{0} \sum_{j=0}^{n} T_2 T_3^{n-j} \right) \left(\frac{1}{0} \sum_{j=0}^{n} T_2 T_3^{n-j} \right) T_3^{*1+n} \]
So, \(T^{*1+n} T^{1+n} - (1 + n)TT^* + nI \geq 0 \) gives
\[\left(\begin{array}{cc} A & B \\ B^* & C \end{array} \right) \geq 0 \]
Where \(A = 1 - (1 + n)(1 + T_2 T_2^*) + n, \ B = \sum_{j=0}^{n} T_2 T_3^{n-j} - (1 + n)T_2 T_3^* \) and \(C = (\sum_{j=0}^{n} T_2 T_3^{n-j})^* \sum_{j=0}^{n} T_2 T_3^{n-j} + T_3^{*1+n} T_3^{1+n} - (1 + n)T_3 T_3^* + n \)
But, we know that, ” If \(A \) is a matrix of the form \(\left(\begin{array}{cc} A & B \\ B^* & C \end{array} \right) \geq 0 \) if and only if \(A \geq 0, C \geq 0 \) and \(B = A^2 WC^2 \) for some contraction \(W \).
Therefore \(1 - (1 + n)(1 + T_2 T_2^*) + n \geq 0 \), which implies that \(- (1 + n)T_2 T_2^* \geq 0 \). This gives \(T_2 = 0, \) since \(n \) is a positive integer. Also \(T_3 \) is \(*-n\)-class Q operator.

Corollary 10. If \(T \in B(H) \) is of \(*-n\) class Q operator for a positive integer \(n \), then \(T \) is of the form \(T = \left(\begin{array}{cc} \lambda & 0 \\ 0 & T_3 \end{array} \right) \) on \(H = \ker(T - \lambda) \oplus \overline{\text{ran}(T - \lambda)} \), where \(T_3 \) is \(*-n\) class Q operator and \(\ker(T - \lambda) = \{0\} \).

Theorem 11. If \(T \in B(H) \) is a \(*-n\)-class Q operator for a positive integer \(n \), \(T \) does not have dense range and \(T \) has the following \(2 \times 2 \) matrix representation
\[T = \left(\begin{array}{cc} T_1 & T_2 \\ 0 & T_3 \end{array} \right) \] on \(H = \overline{\text{ran}(T)} \oplus \ker T^* \), if and only if \(T_1 \) is also \(*-n\)-class Q operator on \(\overline{\text{ran}(T)} \) and \(T_3 = 0 \). Further more \(\sigma(T) = \sigma(T_1) \cup \{0\} \) where \(\sigma(T) \) denotes the spectrum of \(T \).

Proof. Let \(T \in B(H) \) be \(*-n\) class Q operator and \(P \) be an orthogonal projection onto \(\overline{\text{ran}(T)} \). Then \(T_1 = TP = PTP \). By Theorem 2 we have that
\[P(T^{*1+n} T^{1+n} - (1 + n)TT^* + nI)P \geq 0 \]
\[T^{*1+n} T^{1+n} - (1 + n)(T_1 T_1^*) + nI \geq (1 + n)T_2 T_2^* \]
\[\geq (1 + n)|T_2|^2 \geq 0 \]
Therefore \(T_1 \) is \(*-n\)-class Q operator on \(\overline{\text{ran}(T)} \). Also for any \(x = (x_1, x_2) \in H \),
\[\langle T_3^k x_2, x_2 \rangle = \langle T^k(I - P)x, (I - P)x \rangle \]
\[= \langle (I - P)x, T^*k(I - P)x \rangle = 0 \]
This implies \(T_3 = 0 \)

Since \(\sigma(T) \cup \tau = \sigma(T_1) \cup \sigma(T_3) \) where \(\tau \) is the union of the holes in \(\sigma(T) \), which happens to be a subset of \(\sigma(T_1) \cap \sigma(T_3) \) [by corollary 7, 11]. \(\sigma(T_3) = 0 \) and
\(\sigma(T_1) \cap \sigma(T_3) \) has no interior points we have \(\sigma(T) = \sigma(T_1) \cup \{0\} \).

Suppose that \(T = \begin{pmatrix} T_1 & T_2 \\ 0 & T_3 \end{pmatrix} \) on \(H = \text{ran}(T) \oplus \ker T^* \) where \(T_1 \) is \(*\)-class \(Q \) operator on \(\text{ran}(T) \) and \(T_3 = 0 \)

\[
T^{1+n} = \begin{pmatrix} T_1^{1+n} & \sum_{j=0}^{n} T_j^j T_2^j T_3^{n-j} \\ 0 & T_3^{1+n} \end{pmatrix}
\]

\[
T^{*1+n} = \begin{pmatrix} T_1^{*1+n} & (\sum_{j=0}^{n} T_j^j T_2^j T_3^{n-j})^* \\ 0 & T_3^{*1+n} \end{pmatrix}
\]

\[
T^{*1+n} T^{1+n} = \begin{pmatrix} T_1^{*1+n} T_1^{1+n} & T_1^{*1+n} \sum_{j=0}^{n} T_j^j T_2^j T_3^{n-j} \\ (\sum_{j=0}^{n} T_j^j T_2^j T_3^{n-j})^* T_1^{1+n} & (\sum_{j=0}^{n} T_j^j T_2^j T_3^{n-j})^* (\sum_{j=0}^{n} T_j^j T_2^j T_3^{n-j}) + T_3^{1+n} T_3^{*1+n} \end{pmatrix}
\]

Since \(T_3 = 0 \) and \(T \) is \(*\)-class \(Q \) operator,

\[
T^{*1+n} T^{1+n} - (1+n)TT^* + nI = \begin{pmatrix} T_1^{*1+n} T_1^{1+n} - (1+n)(T_1 T_1^* + T_2 T_2^*) + n & 0 \\ 0 & 0 \end{pmatrix} \geq 0
\]

Hence \(T \) is \(*\)-class \(Q \) operator. \(\Box \)

Theorem 12. Let \(M \) be a closed \(T \)-invariant subspace of \(H \). Then the restriction \(T|_M \) of a \(*\)-class \(Q \) operator \(T \) to \(M \) is \(*\)-class \(Q \) operator.

Proof. By Theorem 11, \(T|_M \) is also \(*\)-class \(Q \) operator. \(\Box \)

Theorem 13. If \(T \) is \(*\)-class \(Q \) operator and \(\lambda \neq 0 \), then \(Tx = \lambda x \) implies \(T^*x = \bar{\lambda}x \) for every unit vector \(x \) in \(H \).

Proof. Suppose \(T \) is \(*\)-class \(Q \) operator and since \(Tx = \lambda x \), we have \(|\lambda|^2 \leq \frac{1}{1+n}(|\lambda|^{2(1+n)} + n) \geq |\lambda|^2 \), then \(\frac{1}{1+n}(|\lambda|^{2(1+n)} + n) = |\lambda|^2 \)

Hence \(\|T^*x\|^2 \leq |\lambda|^2 \). Also \(\langle (T - \lambda)x, (T - \lambda)^*x \rangle \leq |\lambda|^2 - 2|\lambda|^2 + |\lambda|^2 = 0 \). Hence, \(T^*x = \bar{\lambda}x \) \(\Box \)

Corollary 14. Let \(T \) is \(*\)-class \(Q \) operator and \(\lambda, \mu \) be distinct eigen values of \(T \). If \(x \) and \(y \) are the corresponding eigen vectors of \(\lambda \) and \(\mu \) respectively, then \(\langle x, y \rangle = 0 \).

Corollary 15. If \(T^* \) is \(*\)-class \(Q \) operator then \(\beta(T - \lambda) \leq \alpha(T - \lambda) \) for all \(\lambda \in C \).

Corollary 16. For \(T \in B(H) \), let \(T \) is \(*\)-class \(Q \) operator.

1. If \(\lambda \in \sigma_a(T) \) and \(\| (T - \lambda)x_m \| \to 0 \) for unit vectors \(x_m \) then \(\| (T - \lambda)^*x_m \| \to 0 \)

2. Let \(\lambda \) and \(\mu \) (\(\lambda \neq \mu \)) be in \(\sigma_a(T) \). If \(\| (T - \lambda)x_m \| \to 0 \) and \(\| (T - \mu)y_m \| \to 0 \) for unit vectors \(x_m \) and \(y_m \) then \(\langle x_m, y_m \rangle \to 0 \).
Theorem 17. Let T be a regular *- n class Q operator, then the approximate point spectrum lies in the disc

$$\sigma_{ap}(T) \subseteq \{ \lambda \in \mathbb{C} : \frac{(1+n)^{1/2}}{||T^{-1}||(||T'^n||^2+n||T^{-1}||^2)^{1/2}} \leq |\lambda| \leq ||T|| \}$$

Proof. Suppose T is regular n class Q operator, then for every unit vector x in H, we have

$$\|x\|^2 = \|T^{-1}T^*x\|^2 \leq \|T^{-1}\|^2\|T^*x\|^2$$

$$\leq \|T^{-1}\|^2\left(\frac{1}{1+n}(\|T^{1+n}x\|^2 + n\|x\|^2)\right)$$

$$\leq \|T^{-1}\|^2\left(\|T^n\|^2\|Tx\|^2 + n\|T^{-1}\|^2\|Tx\|^2\right)$$

Hence $\|Tx\|^2 \geq \frac{(1+n)\|x\|^2}{\|T^{-1}\|^2(\|T^n\|^2 + n\|T^{-1}\|^2)}$

Now assume that $\lambda \in \sigma_{ap}(T)$. Then there exists a sequence $\{x_m\}$, $\|x_m\| = 1$ such that $\|(T - \lambda x_m)\| \to 0$ when $m \to \infty$ we have

$$\|Tx_m - \lambda x_m\| \geq \|Tx_m\| - |\lambda||x_m||$$

$$\geq \|T\| - |\lambda|$$

$$\geq \frac{(1+n)^{1/2}}{\|T^{-1}\|^2(\|T^n\|^2 + n\|T^{-1}\|^2)^{1/2}} - |\lambda|$$

Now when $m \to \infty$, $|\lambda| \geq \frac{(1+n)^{1/2}}{\|T^{-1}\|^2(\|T^n\|^2 + n\|T^{-1}\|^2)^{1/2}}$ \hfill \square

References

