INTUITIONISTIC FUZZY $\alpha -$TRANSLATION
ON $\beta -$ALGEBRAS

K. Sujatha1, P. Muralikrishna2

1Saiva Bhanu Kshatriya College
Aruppukottai, 626101, INDIA

2School of Advanced Sciences
VIT University
Vellore, INDIA

Abstract: In this paper, we define the concept of an Intuitionistic fuzzy α-translation for some $\alpha \in [0, 1]$ on $\beta-$subalgebras of a $\beta-$algebra and investigate some of their elegant and simple results.

AMS Subject Classification: 08A72, 03E72

Key Words: $\beta-$algebra, intuitionistic fuzzy $\beta-$algebra, intuitionistic fuzzy translation

1. Introduction

In 2002, J.Neggers and Kim [5] introduced $\beta-$algebras that arised from the classical and non-classical propositional logic. The theory of fuzzy sets proposed by L.A.Zadeh [7] in 1965 is generalized in 1986 by K.T.Aтанassov [2] as Intuitionistic fuzzy sets. Lee and Jun [3] applied the idea of fuzzy translation in BCK and BCI algebras. The fuzzy Translation was introduced in BF and BG algebras by M.Chandramouleswaran et. al [4]. In [1], the authors introduced the concept of fuzzy $\beta-$algebras. In [6], we introduced Intuitionistic fuzzy $\beta-$algebras and product in $\beta-$algebras. In this paper, we discuss the notion of Intuitionistic fuzzy Translation on $\beta-$algebras.
2. Preliminary

In this section we recall some basic definitions needed for our work.

Definition 2.1. A β-algebra is a non-empty set X with a constant 0 and two binary operations $+$ and $-$ satisfying the following axioms:

1. $x - 0 = x$
2. $(0 - x) + x = 0$
3. $(x - y) - z = x - (z + y) \ \forall \ x, y, z \in X.$

Definition 2.2. Let A be a fuzzy subset of X and $\alpha \in [0, 1 - \sup \{\mu_A(x)\}] \forall x \in X$. A mapping $(\mu_A)_\alpha^T : X \rightarrow [0, 1]$ is called Fuzzy α-translation of A, if it satisfies $(\mu_A)^T_\alpha(x) = \mu_A(x) + \alpha \ \forall x \in X.$

Definition 2.3. Let A be an Intuitionistic fuzzy subset of X and $\alpha \in [0, 1 - \sup \{\mu_A(x) + \nu_A(x)\}] \forall x \in X$. A mapping $A^T_\alpha = \{(\mu_A)^T_\alpha, (\nu_A)^T_\alpha\}$ where $(\mu_A)^T_\alpha : X \rightarrow [0, 1]$ and $(\nu_A)^T_\alpha : X \rightarrow [0, 1]$ is called an Intuitionistic Fuzzy α-translation of A, if it satisfies the following conditions

1. $(\mu_A)^T_\alpha(x + y) = \mu_A(x + y) + \alpha$
2. $(\nu_A)^T_\alpha(x + y) = \nu_A(x + y) - \alpha \ \forall x \in X.$

3. Intuitionistic Fuzzy α-Translation on β-Algebras

In this section, we introduce the notion of Intuitionistic fuzzy α-translation. To illustrate the concept, we discuss some examples. Also we prove some simple properties.

Definition 3.1. Let X be a β-algebra. Let A be an Intuitionistic fuzzy subset of X and $\alpha \in [0, 1 - \sup \{\mu_A(x) + \nu_A(x)\}] \forall x \in X$. A mapping $A^T_\alpha = \{(\mu_A)^T_\alpha, (\nu_A)^T_\alpha\}$, where $(\mu_A)^T_\alpha : X \rightarrow [0, 1]$ and $(\nu_A)^T_\alpha : X \rightarrow [0, 1]$ is called an Intuitionistic Fuzzy α-translation on β-subalgebra of A, if it satisfies the following conditions

1. $(\mu_A)^T_\alpha(x + y) = \mu_A(x + y) + \alpha$ and $(\mu_A)^T_\alpha(x - y) = \mu_A(x - y) + \alpha$
2. $(\nu_A)^T_\alpha(x + y) = \nu_A(x + y) - \alpha$ and $(\nu_A)^T_\alpha(x - y) = \nu_A(x - y) - \alpha \ \forall x \in X.$
Similarly, we can prove that \((\nu, \mu)\) are defined on \(X\) with the Cayley’s table

<table>
<thead>
<tr>
<th>+</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Now, \(A\) is defined as

\[
\mu_A(x) = \begin{cases}
0.7 & x = 0,1 \\
0.6 & \text{otherwise}
\end{cases} \quad \text{and} \quad \nu_A(x) = \begin{cases}
0.1 & x = 0,1 \\
0.3 & \text{otherwise}
\end{cases}
\]

Let us set \(\alpha = 0.05\), then

\[
A^T_\alpha = (\mu_A^T_\alpha(x), \nu_A^T_\alpha(x)),
\]

\[
(\mu_A^T_\alpha(x)) = \begin{cases}
0.12 & x = 0,1 \\
0.11 & \text{otherwise}
\end{cases} \quad \text{and} \quad (\nu_A^T_\alpha(x)) = \begin{cases}
0.05 & x = 0,1 \\
0.25 & \text{otherwise}
\end{cases}
\]

Hence \(A^T_\alpha\) is an Intuitionistic fuzzy \(\alpha\)-translation on \(\beta\)-subalgebra \(X\).

Theorem 3.3. If \(A\) is an IF \(\beta\)-subalgebra of \(X\), then \(A\) is an Intuitionistic fuzzy \(\alpha\)-translation of \(X\) for all \(\alpha \in \left[0, 1 - \sup \{\mu_A(x) + \nu_A(x)\}\right]\).

Proof. Let \(x, y \in X\) and \(\alpha \in \left[0, 1 - \sup \{\mu_A(x) + \nu_A(x)\}\right]\).

Then

\[
\mu_A(x + y) \geq \min \{\mu_A(x), \mu_A(y)\} \quad \text{and} \quad \nu_A(x + y) \leq \max \{\nu_A(x), \nu_A(y)\}.
\]

Now,

\[
(\mu_A^T_\alpha(x + y)) = \mu_A(x + y) + \alpha \\
\geq \min \{\mu_A(x), \mu_A(y)\} + \alpha \\
= \min \{\mu_A(x) + \alpha, \mu_A(y) + \alpha\} \\
= \min \{(\mu_A^T_\alpha(x)), (\mu_A^T_\alpha(y))\}
\]

Similarly, we can prove that \((\mu_A^T_\alpha(x - y)) \geq \min \{(\mu_A^T_\alpha(x)), (\mu_A^T_\alpha(y))\}\) and

\[
(\nu_A^T_\alpha(x + y)) = \nu_A(x + y) - \alpha \\
\leq \max \{\nu_A(x), \nu_A(y)\} - \alpha \\
= \max \{\nu_A(x) + \alpha, \nu_A(y) - \alpha\} \\
= \max \{(\nu_A^T_\alpha(x)), (\nu_A^T_\alpha(y))\}
\]

Similarly, we can prove that \((\nu_A^T_\alpha(x - y)) \leq \max \{(\nu_A^T_\alpha(x)), (\nu_A^T_\alpha(y))\}.

Hence \(A\) is an IF \(\alpha\)-translation \(\beta\)-subalgebra of \(X\).
Corollary 3.4. If \(A^T_\alpha = \{ (\mu_A)^T_\alpha, (\nu_A)^T_\alpha \} \) is an Intuitionistic Fuzzy \(\alpha \)-translation on \(\beta \)-subalgebra of \(\beta \)-algebra \(X \), then \(A \) is an IF\(\beta \)-subalgebra of \(X \).

One can easily prove the following results.

Lemma 3.5. If \(A^T_\alpha \) is an Intuitionistic Fuzzy \(\alpha \)-translation on \(\beta \)-subalgebra of \(\beta \)-algebra \(X \), then

1. \((\mu_A)^T_\alpha(x) \leq (\mu_A)^T_\alpha(0) \)
2. \((\nu_A)^T_\alpha(x) \geq (\nu_A)^T_\alpha(0) \)

Lemma 3.6. If \(A^T_\alpha \) is an Intuitionistic Fuzzy \(\alpha \)-translation on \(\beta \)-subalgebra of \(\beta \)-algebra \(X \), then

1. \((\mu_A)^T_\alpha(x) \leq (\mu_A)^T_\alpha(x - 0) \)
2. \((\nu_A)^T_\alpha(x) \geq (\nu_A)^T_\alpha(x - 0) \)

Definition 3.7. Let \(f : X \rightarrow Y \) be a function. Let \(A \) and \(B \) be two IF\(\alpha \)-translation on \(\beta \)-subalgebras in \(X \) and \(Y \) respectively. Then inverse image of \(B \) under \(f \) is defined by \(f^{-1}(B) = \{ f^{-1}(\mu_B)^T_\alpha(x), f^{-1}(\nu_B)^T_\alpha(x) | x \in X \} \) such that \(f^{-1}(\mu_B)^T_\alpha(x) = \mu_B(f(x) + \alpha) \) and \(f^{-1}(\nu_B)^T_\alpha(x) = \nu_B(f(x) - \alpha) \).

Theorem 3.8. Let \(X \) and \(Y \) be two \(\beta \)-algebras. Let \(A \) and \(B \) be two IF\(\alpha \)-translation on \(\beta \)-subalgebras. Let \(f : X \rightarrow Y \) be a homomorphism. If \(A \) is an IF\(\alpha \)-translation on \(\beta \)-subalgebra of \(Y \). Then \(f^{-1}(A) \) is a IF\(\alpha \)-translation on \(\beta \)-subalgebra of \(X \).

Proof. Let \(A \) be an IF\(\alpha \)-translation on \(\beta \)-subalgebra of \(Y \) and \(x, y \in Y \). Then

\[
\begin{align*}
 f^{-1}(\mu_A)^T_\alpha(x + y) &= f^{-1}(\mu_A)(x + y) + \alpha \\
 &= \mu_A(f(x + y)) + \alpha \\
 &= \mu_A(f(x) + f(y)) + \alpha \\
 &\geq \min \{ \mu_A(f(x) + \alpha), \mu_A(f(y) + \alpha) \} \\
 &= \min \{ f^{-1}(\mu_A)^T_\alpha(x), f^{-1}(\mu_A)^T_\alpha(y) \}.
\end{align*}
\]

Therefore

\[
 f^{-1}(\mu_A)^T_\alpha(x - y) \geq \min \{ f^{-1}(\mu_A)^T_\alpha(x), f^{-1}(\mu_A)^T_\alpha(y) \}.
\]

Similarly, we can prove that,

\[
 f^{-1}(\nu_A)^T_\alpha(x + y) \leq \max \{ f^{-1}(\nu_A)^T_\alpha(x), f^{-1}(\nu_A)^T_\alpha(y) \}.
\]
Moreover
\[f^{-1}(\nu_A)^T_\alpha(x - y) \leq \max \{ f^{-1}(\nu_A)^T_\alpha(x), f^{-1}(\nu_A)^T_\alpha(y) \}. \]

Hence \(f^{-1}(A) \) is an IF\(\alpha \)-translation on \(\beta \)-subalgebra of \(X \).

Theorem 3.9. Let \(X \) and \(Y \) be two \(\beta \)-algebras. Let \(A \) and \(B \) be two IF\(\alpha \)-translation on \(\beta \)-subalgebras. Let \(f : X \to Y \) be a epimorphism. If \(A \) is an IF\(\alpha \)-translation on \(\beta \)-subalgebras of \(X \).Then \(f(A) \) is IF\(\alpha \)-translation on \(\beta \)-subalgebras of \(Y \).

That is \(f(\mu_B)^T_\alpha(x) = \mu_B(f(x) + \alpha) \) and \(f(\nu_B)^T_\alpha(x) = \nu_B(f(x) - \alpha) \).

Proof. Let \(A \) be an IF\(\alpha \)-translation on \(\beta \)-subalgebra of \(Y \) and \(x, y \in Y \).

Then
\[
\begin{align*}
 f(\mu_A)^T_\alpha(x + y) &= f(\mu_A(x + y) + \alpha) \\
 &= \mu_A(f(x + y) + \alpha) \\
 &= \mu_A(f(x) + f(y) + \alpha) \\
 &\geq \min \{ \mu_A(f(x) + \alpha), \mu_A(f(y) + \alpha) \} \\
 &= \min \{ f(\mu_A)^T_\alpha(x), f(\mu_A)^T_\alpha(y) \}
\end{align*}
\]

Therefore
\[
 f(\mu_A)^T_\alpha(x - y) \geq \min \{ f(\mu_A)^T_\alpha(x), f(\mu_A)^T_\alpha(y) \}.
\]

Similarly, we can prove that
\[
 f(\nu_A)^T_\alpha(x + y) \leq \max \{ f(\nu_A)^T_\alpha(x), f(\nu_A)^T_\alpha(y) \}.
\]

Moreover
\[
 f(\nu_A)^T_\alpha(x - y) \leq \max \{ f(\nu_A)^T_\alpha(x), f(\nu_A)^T_\alpha(y) \}.
\]

Hence \(f(A) \) is an IF\(\alpha \)-translation on \(\beta \)-subalgebra of \(Y \).

References

