FUZZY DOT β–IDEALS OF β–ALGEBRAS

M. Abu Ayub Ansari1, M. Chandramouleswaran2

1M.S.S.Wakf Board College
Madurai, 625020, INDIA

2Saiva Bhanu Kshatriya College
Aruppukottai, 626101, INDIA

Abstract: In this paper, we introduce the notion of fuzzy dot β–ideals on β–algebras and investigate some of their properties.

AMS Subject Classification: 03E72, 06F35, 03G25
Key Words: β–algebras, fuzzy dot ideals

1. Introduction

In 1966, Y. Imai and K. Iseki ([4], [5]) introduced two classes of abstract algebras: BCK-algebras and BCI-algebras. In 2002, J.Neggers and H.S. Kim introduced the notion of β–algebra [7]. In [6], the author introduced the notion of fuzzy dot subalgebras of d-algebras as a generalization of a fuzzy subalgebra. In [1], we introduce the notion of fuzzy β subalgebras. In [2], we introduced the notion of fuzzy dot β–subalgebras of β–algebras and in [3], we introduced and discussed some properties of fuzzy β–ideals of β–algebras. In this paper, we introduce the notion of fuzzy dot β–ideals of β–algebras and investigate some of their properties.
2. Preliminaries

In this section we recall some basic definitions that are required in the sequel.

Definition 2.1. [7] A \(\beta \)-algebra is a non-empty set \(X \) with a constant 0 and two binary operations + and − satisfying the following axioms:

1. \(x - 0 = x \).
2. \((0 - x) + x = 0 \).
3. \((x - y) - z = x - (z + y) \) \(\forall \ x, y, z \in X \).

Example 2.2. Let \(X = \{0, 1, 2, 3\} \) be a set with constant 0 and two binary operations + and - are defined on \(X \) with the Cayley’s table

<table>
<thead>
<tr>
<th>+</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>−</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Then \((X, +, −, 0) \) is a \(\beta \)-algebra.

Note: In a \(\beta \)-algebra a partial ordering \(\leq \) can be defined by \(x \leq y \) if and only if \(x - y = 0 \).

Definition 2.3. Let \(\mu_1 \) and \(\mu_2 \) be two fuzzy sets of \(X_1 \) and \(X_2 \) respectively. Then the direct product \(\mu_1 \times \mu_2 \) of \(\mu_1 \) and \(\mu_2 \) is defined as the fuzzy set of \(X_1 \times X_2 \)

\[
(\mu_1 \times \mu_2)(x_1, x_2) = \min \{\mu_1(x_1), \mu_2(x_2)\} \ \forall \ (x_1, x_2) \in X_1 \times X_2.
\]

Definition 2.4. Let \(\mu \) be a fuzzy set in a set \(X \). For \(t \in [0, 1] \), the set \(\mu_t = \{x \in X/\mu(x) \geq t\} \) is called a level subset of \(\mu \).

Definition 2.5. A non-empty subset \(A \) of a \(\beta \)-algebra \((X, +, −, 0) \) is called a \(\beta \)-subalgebra of \(X \), if

1. \(x + y \in A, \forall x, y \in A \) and
2. \(x - y \in A, \forall x, y \in A \).

Definition 2.6. ([2], Definition 3.1) Let \(\mu \) be a fuzzy set in a \(\beta \)-algebra \(X \). Then \(\mu \) is called a fuzzy dot \(\beta \)-subalgebra of \(X \) if

1. \(\mu(x + y) \geq \mu(x) \cdot \mu(y) \ \forall x, y \in X \).
2. $\mu(x - y) \geq \mu(x).\mu(y)$ $\forall x, y \in X$.

Definition 2.7. ([3], Definition 3.1) A non-empty subset I of a $\beta -$algebra $(X, +, -, 0)$ is called a $\beta -$ideal of X, if

1. $0 \in I$,
2. if $x - y$ and $y \in I$ then $x \in I$ $\forall x, y \in X$.

Definition 2.8. Let μ be a fuzzy set in a $\beta -$algebra X. Then μ is called a fuzzy $\beta -$ideal of X if

1. $\mu(0) \geq \mu(x)$ $\forall x \in X$, and
2. $\mu(x) \geq \min\{\mu(x - y), \mu(y)\}$ $\forall x, y \in X$.

3. Fuzzy Dot $\beta -$Ideals of $\beta -$Algebras

In this section we introduce the notion of fuzzy dot $\beta -$ideals of $\beta -$algebras and proved some simple theorem.

Definition 3.1. Let μ be a fuzzy set in a $\beta -$algebra X. Then μ is called a fuzzy dot $\beta -$ideal of X if

1. $\mu(0) \geq \mu(x)$ $\forall x \in X$, and
2. $\mu(x) \geq \mu(x - y).\mu(y)$ $\forall x, y \in X$.

Example 3.2. Consider the $\beta -$algebra $(X, +, -, 0)$ in Example:2.2

Define $\mu : X \to [0, 1]$ such that

$$
\mu(x) = \begin{cases}
0.9 & \text{if } x = 0 \\
0.4 & \text{if } x = 1 \\
0.6 & \text{if } x = 2, 3
\end{cases}
$$

then μ is a fuzzy dot $\beta -$ideal of X.

Theorem 3.3. Every fuzzy $\beta -$ideal of X is a fuzzy dot $\beta -$ideal of X. The converse not true in all cases.

Proof. Let μ is a fuzzy $\beta -$ideal of X. Then $\mu(0) \geq \mu(x)$ $\forall x \in X$, and $\mu(x) \geq \min\{\mu(x - y), \mu(y)\} \geq \mu(x - y).\mu(y)$ $\forall x, y \in X$.

Therefore μ is a fuzzy dot $\beta -$ideal of X.
Note: In the example 3.2, the fuzzy set \(\mu \) is a fuzzy dot \(\beta \)-ideal of \(X \) but \(\mu \) is not a fuzzy \(\beta \)-ideal of \(X \), since \(\mu(1) = 0.4 \not\geq 0.6 = \min \{0.6, 0.6\} = \min \{\mu(3), \mu(2)\} = \min\{\mu(1-2), \mu(2)\}\).

One can easily prove the following.

Lemma 3.4. Let \(X \) be a \(\beta \)-algebra, then \(x = (x - y) + y \ \forall \ x \in X \).

Lemma 3.5. If \(\mu \) is a fuzzy set of \(X \) such that

1. \(\mu(0) \geq \mu(x^*) \geq \mu(x) \ \forall \ x \in X \) and
2. \(\mu(x + y) \geq \mu(x) \cdot \mu(y) \ \forall \ x, y \in X \),

then \(\mu \) is a fuzzy dot \(\beta \)-ideal of \(X \). Also \(\mu \) is a fuzzy dot \(\beta \)-subalgebra of \(X \).

Proof. Using Lemma 3.4 and the given conditions, the result follows.

Theorem 3.6. Let \(\mu \) is a fuzzy dot \(\beta \)-ideal of \(X \). Then the following holds.

1. If \(x \leq y \), then \(\mu(x) \geq \mu(0) \cdot \mu(y) \ \forall \ x, y \in X \).
2. If \(x \leq y + z \), then \(\mu(x) \geq \mu(0) \cdot \mu(y) \cdot \mu(z) \ \forall \ x, y, z \in X \).
3. For any positive integer \(n \), \(\mu^n \) is also a fuzzy dot \(\beta \)-ideal of \(X \) where \(\mu^n(x) = (\mu(x))^n \ \forall \ x \in X \).
4. If \(\mu^c \) is a fuzzy dot \(\beta \)-ideal of \(X \), then \(\mu \) is a constant function.

Proof.

1. Let \(x, y \in X \). Now

\[
\mu(x) \geq \mu(x - y) \cdot \mu(y) (\because \mu \text{ is a fuzzy dot ideal}) \\
\Rightarrow \mu(x) \geq \mu(0) \cdot \mu(y) (\because x \leq y).
\]

2. follows from definition.

3. Let \(x, y \in X \) and let \(\mu \) is a fuzzy dot \(\beta \)-ideal of \(X \). Then

\[
\mu(0) \geq \mu(x) \Rightarrow (\mu(0))^n \geq (\mu(x))^n \Rightarrow \mu^n(0) \geq \mu^n(x) \\
\mu(x) \geq \mu(x - y) \cdot \mu(y) \Rightarrow (\mu(x))^n \geq (\mu(x - y))^n \cdot (\mu(y))^n \\
\text{Thus, } \mu^n(x) \geq \mu^n(x - y) \cdot \mu^n(y)
\]
4. For any $x \in X$,
 $\mu(0) \geq \mu(x)$ (since μ is a fuzzy dot β–ideal)

 Now μ^{c} is a fuzzy dot β–ideal.

 Thus $\mu^{c}(0) \geq \mu^{c}(x) \Rightarrow 1 - \mu(0) \geq 1 - \mu(x) \Rightarrow \mu(0) \leq \mu(x)$

 Hence, $\mu(0) = \mu(x) \ \forall \ x \in X$, μ is a constant function.

Theorem 3.7. If μ_{1} and μ_{2} be two fuzzy dot β–ideals of X then $\mu_{1} \cap \mu_{2}$

is also a fuzzy dot β–ideal of X.

The above theorem can be generalized as follows.

Corollary 3.8. If $\{\mu_{i} / i = 1, 2, 3, \cdots \}$ be a family of fuzzy dot β–ideals of X,
then $\cap \mu_{i}$ is also a fuzzy dot β–ideal of X.

Theorem 3.9. Let μ_{1} and μ_{2} be two fuzzy dot β–ideals of β–algebra X.

Then the direct product $\mu_{1} \times \mu_{2}$ of μ_{1} and μ_{2} is defined by $(\mu_{1} \times \mu_{2})(x, y) =
\mu_{1}(x) \cdot \mu_{2}(y)$ is also a fuzzy dot β–ideal of $X \times X$.

Proof. Let $X = X \times X$ and $\mu = \mu_{1} \times \mu_{2}$.

Let $x = (x_{1}, x_{2})$ and $y = (y_{1}, y_{2})$ be two elements of X.

Clearly $\mu(\theta) \geq \mu(x) \forall x = (x_{1}, x_{2})$ and $\theta = (0, 0) \in X$.

$\mu(x) = \mu((x_{1}, x_{2}) = \mu_{1}(x_{1}) \cdot \mu_{2}(x_{2})$ Thus

$$
\mu(x) \geq \mu_{1}(x_{1} - y_{1}) \cdot \mu_{2}(x_{2} - y_{2}) \cdot \mu_{2}(y_{2})
$$

$$
= (\mu_{1} \times \mu_{2})(x_{1}, x_{2}) - (y_{1}, y_{2})) \cdot (\mu_{1} \times \mu_{2})(y_{1}, y_{2})
$$

(Since $\mu_{1} \mu_{2}$ are fuzzy dot ideals)

$$
= \mu(x - y) \cdot \mu(y).
$$

Hence $\mu_{1} \times \mu_{2}$ is a fuzzy dot β–subalgebra of $X \times X$.

The above result can be extended as follows.

Theorem 3.10. Let μ_{1} and μ_{2} be two fuzzy dot β–ideals of β–algebra X_{1} and X_{2} respectively.

Then the direct product $\mu_{1} \times \mu_{2}$ is a fuzzy dot β–ideal of $X_{1} \times X_{2}$.

Theorem 3.11. Let $f : X \rightarrow Y$ be a homomorphism of a β–algebra X

into a β–algebra Y. If μ is a fuzzy dot β–ideal of Y, then the pre-image of μ

, denoted by $f^{-1}(\mu)$ is defined as $\{f^{-1}(\mu)\}(x) = \mu(f(x)), \forall x \in X$, is a fuzzy dot β–ideal of X.

Proof. Let μ be a fuzzy dot β–ideal of Y. For all

$x \in X, f^{-1}(\mu)(0) = \mu(f(0)) \geq \mu(f(x)) = \{f^{-1}(\mu)\}(x)$ Let $x, y \in X$. Then

$$
\{f^{-1}(\mu)\}(x) = \mu(f(x)) \geq \mu(f(x - y)) \cdot \mu(f(y)) = \{f^{-1}(\mu)(x - y)\} \cdot \{f^{-1}(\mu)\}(y)
$$
Hence $f^{-1}(\mu)$ is a fuzzy dot β–ideal of X.

Theorem 3.12. Let $f : X \to Y$ be an epimorphism of a β–algebra X into a β–algebra Y. Then μ is a fuzzy dot β–ideal of Y, whenever $f^{-1}(\mu)$ is a fuzzy dot β–ideal of X.

Proof. For any $y \in Y$, there exist a $x \in X$ such that $f(x) = y$. Then $\mu(y) = \mu(f(x)) = \{f^{-1}(\mu)\}(x) \leq \{f^{-1}(\mu)\}(0) = \mu(f(0)) = \mu(0)$. Let $y, y' \in Y$.

Then there exist some $x, x' \in X$ such that $f(x) = y$ and $f(x') = y'$. Now

$$
\mu(y) = \mu(f(x)) \\
= \{f^{-1}(\mu)\}(x) \\
\geq \{f^{-1}(\mu)\}(x-x') \cdot \{f^{-1}(\mu)\}(x') \\
= \mu(f(x-x') \cdot \mu(f(x'))) \\
= \mu(f(x) - f(x')) \cdot \mu(f(x')) \\
= \mu(y - y') \cdot \mu(y').
$$

Hence μ is a fuzzy dot β–ideal of Y.

References

